YoloDotNet 1.3.0
See the version list below for details.
dotnet add package YoloDotNet --version 1.3.0
NuGet\Install-Package YoloDotNet -Version 1.3.0
<PackageReference Include="YoloDotNet" Version="1.3.0" />
paket add YoloDotNet --version 1.3.0
#r "nuget: YoloDotNet, 1.3.0"
// Install YoloDotNet as a Cake Addin #addin nuget:?package=YoloDotNet&version=1.3.0 // Install YoloDotNet as a Cake Tool #tool nuget:?package=YoloDotNet&version=1.3.0
YoloDotNet
YoloDotNet is a C# .NET 8.0 implementation of Yolov8 and ONNX runtime with CUDA
YoloDotNet is a .NET 8 implementation of Yolov8 for detecting objects in images and videos using ML.NET and ONNX runtime with GPU acceleration using CUDA.
YoloDotNet currently supports Classification
, Object Detection
, Segmentation
and Pose Estimation
in both images and videos.
YoloDotNet with GPU-acceleration requires CUDA and cuDNN.
âšī¸ Before installing CUDA and cuDNN, make sure to verify the ONNX runtime's current compatibility with specific versions.
Download and install CUDA
Download cuDNN and follow the installation instructions
Yolov8 model exported to ONNX format
Verify your model
using YoloDotNet; // Instantiate a new Yolo object with your ONNX-model using var yolo = new Yolo(@"path\to\model.onnx"); Console.WriteLine(yolo.OnnxModel.ModelType); // Output if valid: Classification, ObjectDetection, Segmentation or PoseEstimation
[!NOTE] For Video, you need FFmpeg and FFProbe
- Download FFMPEG
- Add FFmpeg and ffprobe to the Path-variable in your Environment Variables
Nuget
> dotnet add package YoloDotNet
Example - Image
using SixLabors.ImageSharp;
using SixLabors.ImageSharp.PixelFormats;
using YoloDotNet;
using YoloDotNet.Extensions;
// Instantiate a new Yolo object with your ONNX-model and CUDA (default)
using var yolo = new Yolo(@"path\to\your_model.onnx");
// Load image
using var image = Image.Load<Rgba32>(@"path\to\image.jpg");
// Run
var results = yolo.RunClassification(image, 5); // Top 5 classes
//var results = yolo.RunObjectDetection(image, 0.25);
//var results = yolo.RunSegmentation(image, 0.25);
//var results = yolo.RunPoseEstimation(image, 0.25);
image.Draw(results);
image.Save(@"path\to\save\image.jpg");
Custom Pose-marker configuration
Example on how to configure PoseOptions for a Pose Estimation model
// Pass in a PoseOptions parameter to the Draw() extension method. Ex:
image.Draw(poseEstimationResults, poseOptions);
Example - Video
using SixLabors.ImageSharp;
using SixLabors.ImageSharp.PixelFormats;
using YoloDotNet;
using YoloDotNet.Extensions;
// Instantiate a new Yolo object with your ONNX-model and CUDA
using var yolo = new Yolo(@"path\to\your_model.onnx");
// Video options
var options = new VideoOptions
{
VideoFile = @"path\to\video.mp4",
OutputDir = @"path\to\output\folder",
//GenerateVideo = true,
//DrawLabels = true,
//FPS = 30,
//Width = 640, // Resize video...
//Height = -2, // -2 automatically calculate dimensions to keep proportions
//DrawConfidence = true,
//KeepAudio = true,
//KeepFrames = false,
//DrawSegment = DrawSegment.Default,
//PoseOptions = MyPoseMarkerConfiguration // Your own pose marker configuration...
};
// Run
var results = yolo.RunClassification(options, 5); // Top 5 classes
//var results = yolo.RunObjectDetection(options, 0.25);
//var results = yolo.RunSegmentation(options, 0.25);
//var results = yolo.RunPoseEstimation(options, 0.25);
// Do further processing with results if needed...
GPU
Object detection with GPU and GPU-Id = 0 is enabled by default
// Default setup. GPU with GPU-Id 0
using var yolo = new Yolo(@"path\to\model.onnx");
With a specific GPU-Id
// GPU with a user defined GPU-Id
using var yolo = new Yolo(@"path\to\model.onnx", true, 1);
CPU
YoloDotNet detection with CPU
// With CPU
using var yolo = new Yolo(@"path\to\model.onnx", false);
Access ONNX metadata and labels
The internal ONNX metadata such as input & output parameters, version, author, description, date along with the labels can be accessed via the yolo.OnnxModel
property.
Example:
using var yolo = new Yolo(@"path\to\model.onnx");
// ONNX metadata and labels resides inside yolo.OnnxModel
Console.WriteLine(yolo.OnnxModel);
Example:
// Instantiate a new object
using var yolo = new Yolo(@"path\to\model.onnx");
// Display metadata
foreach (var property in yolo.OnnxModel.GetType().GetProperties())
{
var value = property.GetValue(yolo.OnnxModel);
Console.WriteLine($"{property.Name,-20}{value!}");
if (property.Name == nameof(yolo.OnnxModel.CustomMetaData))
foreach (var data in (Dictionary<string, string>)value!)
Console.WriteLine($"{"",-20}{data.Key,-20}{data.Value}");
}
// Get ONNX labels
var labels = yolo.OnnxModel.Labels;
Console.WriteLine();
Console.WriteLine($"Labels ({labels.Length}):");
Console.WriteLine(new string('-', 58));
// Display
for (var i = 0; i < labels.Length; i++)
Console.WriteLine($"index: {i,-8} label: {labels[i].Name,20} color: {labels[i].Color}");
// Output:
// ModelType ObjectDetection
// InputName images
// OutputName output0
// CustomMetaData System.Collections.Generic.Dictionary`2[System.String,System.String]
// date 2023-11-07T13:33:33.565196
// description Ultralytics YOLOv8n model trained on coco.yaml
// author Ultralytics
// task detect
// license AGPL-3.0 https://ultralytics.com/license
// version 8.0.202
// stride 32
// batch 1
// imgsz [640, 640]
// names {0: 'person', 1: 'bicycle', 2: 'car' ... }
// ImageSize Size [ Width=640, Height=640 ]
// Input Input { BatchSize = 1, Channels = 3, Width = 640, Height = 640 }
// Output ObjectDetectionShape { BatchSize = 1, Elements = 84, Channels = 8400 }
// Labels YoloDotNet.Models.LabelModel[]
//
// Labels (80):
// ---------------------------------------------------------
// index: 0 label: person color: #5d8aa8
// index: 1 label: bicycle color: #f0f8ff
// index: 2 label: car color: #e32636
// index: 3 label: motorcycle color: #efdecd
// ...
Donate
References & Acknowledgements
https://github.com/ultralytics/ultralytics
Product | Versions Compatible and additional computed target framework versions. |
---|---|
.NET | net8.0 is compatible. net8.0-android was computed. net8.0-browser was computed. net8.0-ios was computed. net8.0-maccatalyst was computed. net8.0-macos was computed. net8.0-tvos was computed. net8.0-windows was computed. |
-
net8.0
- Microsoft.ML.OnnxRuntime.Gpu (>= 1.17.0)
- Newtonsoft.Json (>= 13.0.3)
- SixLabors.Fonts (>= 2.0.1)
- SixLabors.ImageSharp (>= 3.1.2)
- SixLabors.ImageSharp.Drawing (>= 2.1.1)
NuGet packages (1)
Showing the top 1 NuGet packages that depend on YoloDotNet:
Package | Downloads |
---|---|
VL.YoloDotNet
YoloDotNet for VL |
GitHub repositories (1)
Showing the top 1 popular GitHub repositories that depend on YoloDotNet:
Repository | Stars |
---|---|
Webreaper/Damselfly
Damselfly is a server-based Photograph Management app. The goal of Damselfly is to index an extremely large collection of images, and allow easy search and retrieval of those images, using metadata such as the IPTC keyword tags, as well as the folder and file names. Damselfly includes support for object/face detection.
|
Added new Pose Estimation feature
Added option to configure a custom pose marker profile
Added option to draw boxes and/or pixel mask on segmented objects
Fixed issue if there are more labels than internal colors