YoloDotNet 1.2.0

There is a newer version of this package available.
See the version list below for details.
dotnet add package YoloDotNet --version 1.2.0                
NuGet\Install-Package YoloDotNet -Version 1.2.0                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="YoloDotNet" Version="1.2.0" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add YoloDotNet --version 1.2.0                
#r "nuget: YoloDotNet, 1.2.0"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install YoloDotNet as a Cake Addin
#addin nuget:?package=YoloDotNet&version=1.2.0

// Install YoloDotNet as a Cake Tool
#tool nuget:?package=YoloDotNet&version=1.2.0                

YoloDotNet

YoloDotNet is a C# .NET 8.0 implementation of Yolov8 and ONNX runtime with CUDA

YoloDotNet is a .NET 8 implementation of Yolov8 for detecting objects in images and videos using ML.NET and ONNX runtime with GPU acceleration using CUDA. YoloDotNet currently supports Classification, Object Detection and Segmentation in both images and videos.

YoloDotNet with GPU-acceleration requires CUDA and cuDNN.

ℹī¸ Before installing CUDA and cuDNN, make sure to verify the ONNX runtime's current compatibility with specific versions.

  • Download and install CUDA

  • Download cuDNN and follow the installation instructions

  • Yolov8 model exported to ONNX format<br> Currently, YoloDotNet supports Classification, Object Detection and Segmentation in both images and videos

    Verify your model

    using YoloDotNet;
    
    // Instantiate a new Yolo object with your ONNX-model
    using var yolo = new Yolo(@"path\to\model.onnx");
    
    Console.WriteLine(yolo.OnnxModel.ModelType); // Output if valid: Classification or ObjectDetection
    

[!NOTE] For Video, you need FFmpeg and FFProbe

  • Download FFMPEG
  • Add FFmpeg and ffprobe to the Path-variable in your Environment Variables

Nuget

> dotnet add package YoloDotNet

Example - Image

using SixLabors.ImageSharp;
using SixLabors.ImageSharp.PixelFormats;
using YoloDotNet;
using YoloDotNet.Extensions;

// Instantiate a new Yolo object with your ONNX-model and CUDA (default)
using var yolo = new Yolo(@"path\to\your_model.onnx");

// Load image
using var image = Image.Load<Rgba32>(@"path\to\image.jpg");

// Run
var results = yolo.RunClassification(image, 5); // Top 5 classes
//var results = yolo.RunObjectDetection(image, 0.25);
//var results = yolo.RunSegmentation(image, 0.25);

image.Draw(results);
image.Save(@"path\to\save\image.jpg");

Example - Video

using SixLabors.ImageSharp;
using SixLabors.ImageSharp.PixelFormats;
using YoloDotNet;
using YoloDotNet.Extensions;

// Instantiate a new Yolo object with your ONNX-model and CUDA
using var yolo = new Yolo(@"path\to\your_model.onnx");

// Video options
var options = new VideoOptions
{
    VideoFile = @"path\to\video.mp4",
    OutputDir = @"path\to\output\folder",
    //GenerateVideo = true,
    //DrawLabels = true,
    //FPS = 30,
    //Width = 1280,
    //Height = 720,
    //DrawConfidence = true,
    //KeepAudio = true,
    //KeepFrames = false
};

// Run
var results = yolo.RunClassification(options, 5); // Top 5 classes
//var results = yolo.RunObjectDetection(options, 0.25);
//var results = yolo.RunSegmentation(options, 0.25);

// Do further processing with results if needed...

GPU

Object detection with GPU and GPU-Id = 0 is enabled by default

// Default setup. GPU with GPU-Id 0
using var yolo = new Yolo(@"path\to\model.onnx");

With a specific GPU-Id

// GPU with a user defined GPU-Id
using var yolo = new Yolo(@"path\to\model.onnx", true, 1);

CPU

YoloDotNet detection with CPU

// With CPU
using var yolo = new Yolo(@"path\to\model.onnx", false);

Access ONNX metadata and labels

The internal ONNX metadata such as input & output parameters, version, author, description, date along with the labels can be accessed via the yolo.OnnxModel property.

Example:

using var yolo = new Yolo(@"path\to\model.onnx");

// ONNX metadata and labels resides inside yolo.OnnxModel
Console.WriteLine(yolo.OnnxModel);

Example:

// Instantiate a new object
using var yolo = new Yolo(@"path\to\model.onnx");

// Display metadata
foreach (var property in yolo.OnnxModel.GetType().GetProperties())
{
    var value = property.GetValue(yolo.OnnxModel);
    Console.WriteLine($"{property.Name,-20}{value!}");

    if (property.Name == nameof(yolo.OnnxModel.CustomMetaData))
        foreach (var data in (Dictionary<string, string>)value!)
            Console.WriteLine($"{"",-20}{data.Key,-20}{data.Value}");
}

// Get ONNX labels
var labels = yolo.OnnxModel.Labels;

Console.WriteLine();
Console.WriteLine($"Labels ({labels.Length}):");
Console.WriteLine(new string('-', 58));

// Display
for (var i = 0; i < labels.Length; i++)
    Console.WriteLine($"index: {i,-8} label: {labels[i].Name,20} color: {labels[i].Color}");

// Output:

// ModelType           ObjectDetection
// InputName           images
// OutputName          output0
// CustomMetaData      System.Collections.Generic.Dictionary`2[System.String,System.String]
//                     date                2023-11-07T13:33:33.565196
//                     description         Ultralytics YOLOv8n model trained on coco.yaml
//                     author              Ultralytics
//                     task                detect
//                     license             AGPL-3.0 https://ultralytics.com/license
//                     version             8.0.202
//                     stride              32
//                     batch               1
//                     imgsz               [640, 640]
//                     names               {0: 'person', 1: 'bicycle', 2: 'car' ... }
// ImageSize           Size [ Width=640, Height=640 ]
// Input               Input { BatchSize = 1, Channels = 3, Width = 640, Height = 640 }
// Output              ObjectDetectionShape { BatchSize = 1, Elements = 84, Channels = 8400 }
// Labels              YoloDotNet.Models.LabelModel[]
//
// Labels (80):
// ---------------------------------------------------------
// index: 0        label: person              color: #5d8aa8
// index: 1        label: bicycle             color: #f0f8ff
// index: 2        label: car                 color: #e32636
// index: 3        label: motorcycle          color: #efdecd
// ...

https://paypal.me/nickswardh

References & Acknowledgements

https://github.com/ultralytics/ultralytics

https://github.com/sstainba/Yolov8.Net

https://github.com/mentalstack/yolov5-net

Product Compatible and additional computed target framework versions.
.NET net8.0 is compatible.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (1)

Showing the top 1 NuGet packages that depend on YoloDotNet:

Package Downloads
VL.YoloDotNet

YoloDotNet for VL

GitHub repositories (1)

Showing the top 1 popular GitHub repositories that depend on YoloDotNet:

Repository Stars
Webreaper/Damselfly
Damselfly is a server-based Photograph Management app. The goal of Damselfly is to index an extremely large collection of images, and allow easy search and retrieval of those images, using metadata such as the IPTC keyword tags, as well as the folder and file names. Damselfly includes support for object/face detection.
Version Downloads Last updated
2.2.0 3,593 10/13/2024
2.1.0 700 10/6/2024
2.0.0 1,813 7/12/2024
1.7.0 882 5/2/2024
1.6.0 474 4/4/2024
1.5.0 255 3/14/2024
1.4.0 631 3/6/2024
1.3.0 450 2/25/2024
1.2.0 218 2/5/2024
1.1.0 207 1/17/2024
1.0.0 306 12/8/2023

Added new segmentation feature
Optimizations for improved performance
Code enhancements for better maintainability