ZenLib 3.1.6

dotnet add package ZenLib --version 3.1.6
NuGet\Install-Package ZenLib -Version 3.1.6
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="ZenLib" Version="3.1.6" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add ZenLib --version 3.1.6
#r "nuget: ZenLib, 3.1.6"
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install ZenLib as a Cake Addin
#addin nuget:?package=ZenLib&version=3.1.6

// Install ZenLib as a Cake Tool
#tool nuget:?package=ZenLib&version=3.1.6

License: MIT Build Status badge


Zen is a constraint solving library for .NET. Zen makes it easy to express high-level symbolic computations directly in .NET. It translates these symbolic expressions to low-level constraint solvers and then back to .NET objects. The Zen library comes equipped with a number of built-in tools for processing symbolic models, including a compiler (to .NET IL), an exhaustive model checker, and a test input generator. It supports multiple backends including one based on the Z3 SMT solver and another based on Binary Decision Diagrams (BDDs).

Table of contents

<a name="installation"></a>


Just add the project to your visual studio solution. Alternatively, a nuget package is available here.

<a name="overview-of-zen"></a>

Overview of Zen

To import the Zen library, add the following line to your source file:

using ZenLib;

Most library methods are found in the Zen.* namespace. To avoid having to write this prefix out every time, you can alternatively add the following using statement:

using static ZenLib.Zen;

The Zen library provides the type Zen<T>, which represents a symbolic value of type T. The library can then solve constraints involving symbolic values. The following code shows a basic use of Zen -- it creates several symbolic variables of different types (e.g., bool, int, string, FSeq - finite sequences) and then encodes constraints over those variables.

// create symbolic variables of different types
var b = Zen.Symbolic<bool>();
var i = Zen.Symbolic<int>();
var s = Zen.Symbolic<string>();
var o = Zen.Symbolic<Option<ulong>>();
var l = Zen.Symbolic<FSeq<int>>(depth: 10);

// build constraints on these variables
var c1 = Zen.Or(b, i <= 10);
var c2 = Zen.Or(Zen.Not(b), o == Option.Some(1UL));
var c3 = Zen.Or(s.Contains("hello"), o.IsNone());
var c4 = Zen.And(
        l.Where(x => x == i).Length() == (BigInteger)5,
        Zen.Not(l.All(x => x == i)));
var c5 = l.All(x => Zen.And(x >= 0, x <= 100));

// solve the constraints to get a solution
var solution = Zen.And(c1, c2, c3, c4, c5).Solve();

System.Console.WriteLine("b: " + solution.Get(b));
System.Console.WriteLine("i: " + solution.Get(i));
System.Console.WriteLine("s: " + solution.Get(s));
System.Console.WriteLine("o: " + solution.Get(o));
System.Console.WriteLine("l: " + string.Join(",", solution.Get(l)));

An example output is the following values:

b: True
i: 38
s: hello
o: Some(1)
l: [10,38,38,38,38,38]

<a name="computing-with-zen-expressions"></a>

Zen Expressions

Zen<T> objects are just normal .NET objects, we can pass them and return them from functions. For instance, the following code computes a new symbolic integer from two integer inputs x and y:

Zen<int> MultiplyAndAdd(Zen<int> x, Zen<int> y)
    return 3 * x + y;

Zen overloads common C# operators such as &,|,^,<=, <, >, >=, +, -, *, true, false to work with Zen values and supports implicit conversions to lift C# values (of type T) to Zen values (of type Zen<T>). Zen can represent a "function" like the one above to perform various symbolic tasks by creating a ZenFunction to wrap the MultiplyAndAdd function:

var function = new ZenFunction<int, int, int>(MultiplyAndAdd);

<a name="executing-a-function"></a>

Executing a function

Zen can execute the function we have built on inputs by calling the Evaluate method on the ZenFunction:

var output = function.Evaluate(3, 2); // output = 11

This will interpret the expression tree created by the Zen function at runtime and return back a C# int value in this case. Of course interpreting a tree is quite slow compared to multiplying a few numbers, so if you need to execute a function many times, Zen can compile the model using the C# System.Reflection.Emit API. This generates IL instructions that execute efficiently - as if the function had been written using actual int values. Doing so is easy, just call the Compile method on the function first:

output = function.Evaluate(3, 2); // output = 11

Or alternatively:

Func<int, int, int> f = Zen.Compile(MultiplyAndAdd);
var output = f(3, 2); // output = 11

We can see the difference by comparing the performance between the two:

var watch = System.Diagnostics.Stopwatch.StartNew();

for (int i = 0; i < 1000000; i++)
    function.Evaluate(3, 2);

Console.WriteLine($"interpreted function time: {watch.ElapsedMilliseconds}ms");


Console.WriteLine($"compilation time: {watch.ElapsedMilliseconds}ms");

for (int i = 0; i < 1000000; i++)
    function.Evaluate(3, 2);

Console.WriteLine($"compiled function time: {watch.ElapsedMilliseconds}ms");
interpreted function time: 4601ms
compilation time: 4ms
compiled function time: 2ms

<a name="searching-for-inputs"></a>

Searching for inputs

Zen can find function inputs that lead to some (un)desirable outcome. For example, we can find an (x, y) input pair such that x is less than zero and the output of the function is 11:

var input = function.Find((x, y, result) => Zen.And(x <= 0, result == 11)); 
// input.Value = (-1883171776, 1354548043)

The type of the result in this case is Option<(int, int)>, which will have a pair of integer inputs that make the output 11 if such a pair exists. In this case the library will find x = -1883171776 and y = 1354548043

To find multiple inputs, Zen supports an equivalent FindAll method, which returns an IEnumerable of inputs where each input in inputs will be unique so there are no duplicates.

using System.Linq;
var inputs = function.FindAll((x, y, result) => Zen.And(x <= 0, result == 11)).Take(5);

<a name="computing-with-sets"></a>

Computing with sets

While the Find function provides a way to find a single input to a function, Zen also provides an additional API for reasoning about sets of inputs and outputs to functions. It does this through a StateSetTransformer API. A transformer is created by calling the Transformer() method on a ZenFunction (or by calling Zen.Transformer(...)):

var f = new ZenFunction<uint, uint>(i => i + 1);
StateSetTransformer<uint, uint> t = f.Transformer();

Transformers allow for manipulating (potentially huge) sets of objects efficient. For example, we can get the set of all input uint values where adding one will result in an output y that is no more than 10 thousand:

StateSet<uint> inputSet = t.InputSet((x, y) => y <= 10000);

This set will include all the values 0 - 9999 as well as uint.MaxValue due to wrapping. Transformers can also manpulate sets by propagating them forward or backwards:

StateSet<uint> outputSet = t.TransformForward(inputSet);

Finally, StateSet objects can also be intersected, unioned, and negated. We can pull an example element out of a set as follows (if one exists):

Option<uint> example = inputSet.Element(); // example.Value = 0

Internally, transformers leverage binary decision diagrams to represent, possibly very large, sets of objects efficiently.

<a name="generating-test-inputs"></a>

Generating test inputs

Zen can automatically generate test inputs for a given model by finding inputs that will lead to different execution paths. For instance, consider an insertion sort implementation. We can ask Zen to generate test inputs for the function that can then be used, for instance to test other sorting algorithms:

var f = new ZenFunction<Pair<int, int>, int>(pair => Zen.If<int>(pair.Item1() < pair.Item2(), 1, 2));

foreach (var input in f.GenerateInputs())
    Console.WriteLine($"input: {input}");

In this case, we get the following output:

input: (0, 0)
input: (0, 1)

The test generation approach uses symbolic execution to enumerate program paths and solve constraints on inputs that lead down each path. Each Zen.If expression is treated as a program branch point (note: you can set the setting Settings.PreserveBranches = true to prevent Zen from simplifying formulas involving If by default if you want to preserve the expression structure.).

<a name="optimization"></a>


Zen supports optimization of objective functions subject to constraints. The API is similar to that for Solve, but requires a maximization or minimization objective. The solver will find the maximal satisfying assignment to the variables.

var a = Zen.Symbolic<Real>();
var b = Zen.Symbolic<Real>();
var constraints = Zen.And(a <= (Real)10, b <= (Real)10, a + (Real)4 <= b);
var solution = Zen.Maximize(objective: a + b, subjectTo: constraints); // a = 6, b = 10

<a name="supported-data-types"></a>

Supported data types

Zen currently supports a subset of .NET types and also introduces some of its own data types summarized below.

.NET Type Description Supported by Z3 backend Supported by BDD backend Supported by StateSetTransformers
bool {true, false} ✔️ ✔️ ✔️
byte 8-bit value ✔️ ✔️ ✔️
char 16-bit UTF-16 character ✔️ ✔️ ✔️
short 16-bit signed value ✔️ ✔️ ✔️
ushort 16-bit unsigned value ✔️ ✔️ ✔️
int 32-bit signed value ✔️ ✔️ ✔️
uint 32-bit unsigned value ✔️ ✔️ ✔️
long 64-bit signed value ✔️ ✔️ ✔️
ulong 64-bit unsigned value ✔️ ✔️ ✔️
Int<_N> N-bit signed value ✔️ ✔️ ✔️
UInt<_N> N-bit unsigned value ✔️ ✔️ ✔️
Option<T> an optional/nullable value of type T ✔️ ✔️ ✔️
Pair<T1, ...> pairs of different values ✔️ ✔️ ✔️
class, struct classes and structs with public fields and/or properties ✔️ ✔️ ✔️
FSeq<T> finite length sequence of elements of type T ✔️
FSet<T> finite size set of elements of type T ✔️
FString finite length string ✔️
BigInteger arbitrary length integer ✔️
Real arbitrary precision rational number ✔️
Map<T1, T2> arbitrary size maps of keys and values of type T1 and T2. Note that T1 and T2 can not use finite sequences ✔️
Set<T> arbitrary size sets of values of type T. Same restrictions as with Map<T1, T2> ✔️
CMap<T1, T2> maps of constant keys of type T1 to values of type T2. ✔️
CSet<T> sets of constants of type T. ✔️
Array<T, _N> Fixed size arrays of values of type T. ✔️
Seq<T> arbitrary size sequences of values of type T. Same restrictions as with Set<T>. Note that SMT solvers use heuristics to solve for sequences and are incomplete. ✔️
string arbitrary size strings. Implemented as Seq<char> ✔️

<a name="primitive-types"></a>

Primitive types

Zen supports the primitive types bool, byte, char, short, ushort, int, uint, long, ulong. All primitive types support (in)equality and integer types support integer arithmetic operations. As an example:

var x = Symbolic<int>();
var y = Symbolic<int>();
var c1 = (~x & y) == 1;
var c2 = And(x + y > 0, x + y < 100);
var solution = And(c1, c2).Solve(); // x = -20, y = 105

<a name="integer-types"></a>

Integer types

Aside from primitive types, Zen also supports the BigInteger type found in System.Numerics for reasoning about ubounded integers as well as other types of integers with fixed, but non-standard bit width (for instance a 7-bit integer). Out of the box, Zen provides the types Int<_N> and UInt<_N> for N=1, 2, 3, ..., 99, 100, 128, 256, 512 ,1024. You can also create a custom integer size by simply declaring a new struct:

public struct _101 { }

<a name="options-and-tuples"></a>

Options, Tuples

Zen offers Pair<T1, T2, ...>, types as a lightweight alternative to classes. By default all values are assumed to be non-null by Zen. For nullable values, it provides an Option<T> type.

var b = Symbolic<Option<byte>>();
var p = Symbolic<Pair<int, int>>>();
var solution = And(b.IsNone(), p.Item1() == 3).Solve(); // b = None, p = (3, 0)

<a name="real-values"></a>

Real Values

Zen supports arbitrary precision rational numbers through the Real type.

var c = new Real(3, 2); // the fraction 3/2 or equivalently 1.5 
var x = Symbolic<Real>();
var y = Symbolic<Real>();
var solution = (2 * x + 3 * y == c).Solve(); // x = 1/2, y = 1/6

<a name="finite-sequences-bags-maps"></a>

Finite Sequences, Bags, Maps

Zen supports several high-level data types that are finite (bounded) in size (the default size is 5 but can be changed). These include:

  • FSeq<T> for reasoning about variable length sequences of values where the order is important.
  • FSet<T> represents finite sets.

One can implement complex functionality over FSeq<T> types by combining the elements of the sequence. For instance, we can sum the elements of a sequence:

public Zen<int> Sum<T>(Zen<FSeq<int>> seq)
    return seq.Fold(Zen.Constant(0), (x, y) => x + y);

<a name="unbounded-sets-maps"></a>

Unbounded Sets and Maps

Zen supports Set<T> and Map<T1, T2> data types that do not restrict the size of the set/map. This type only works with the Z3 backend and requires that T, T1 and T2 not contain any finitized types (FSeq, FString, or FSet). Primitive types (bool, integers, string, BigInteger), classes/structs are allowed.

var s  = Symbolic<string>();
var s1 = Symbolic<Set<string>>();
var s2 = Symbolic<Set<string>>();
var s3 = Symbolic<Set<string>>();
var s4 = Symbolic<Set<string>>();

var c1 = s1.Contains("a");
var c2 = s1.Intersect(s2).Contains("b");
var c3 = Implies(s == "c", s3.Add(s) == s2);
var c4 = s4 == s1.Union(s2);
var solution = And(c1, c2, c3, c4).Solve(); // s = "a", s1 = {b, a}, s2 = {b}, s3 = {}, s4 = {b, a}

<a name="constant-sets-maps"></a>

Constant Sets and Maps

Arbitrary sets and maps described above are compiled to the SMT solver theory of Arrays. While this theory is quite general, it has known performance limitations. As a lightweight alternative, Zen provides the CMap<T1, T2> and CSet<T> classes that offer similar APIs but with the restriction that any map keys or set elements must be C# constant values and not Zen expressions. Zen will compile these sets and maps by creating fresh variables for all possible constants used by the user for these types.

Constant maps are useful for managing a finite number of unknown variables that should be indexed to some data (e.g., a symbolic boolean variable for every edge in a C# graph), and may have better performance in many cases.

CMap<T1, T2> represents a total map from keys of type T1 to values of type T2. When a key is not explicitly added to the map, the resulting value will be the Zen default value for the type T2 (e.g., 0 for integers, false for booleans). CSet<T> is simply implemented as a CMap<T, bool> that says for each key, if the element is in the set. Any example use is shown below:

var x = Symbolic<int>();
var m1 = Symbolic<CMap<string, int>>();
var m2 = Symbolic<CMap<string, int>>();

var c1 = m1.Get("a") == Zen.If(x < 10, x + 1, x + 2);
var c2 = m2 == m1.Set("b", x);
var solution = And(c1, c2).Solve(); // x = 0, m1 = m2 = {"a" => 1, _ => 0}

Constant maps and sets have several limitations:

  • Inequality may not always give the expected result, as the constant maps do not have a canonical representation.
  • They can not be used as values in the Map, Set, or Seq types. This restriction may be relaxed in the future.

<a name="arrays"></a>

Fixed Length Arrays

Zen can model fixed-length arrays of symbolic values using the Array<T, TSize> class. As an example:

var a = Zen.Symbolic<Array<int, _10>>();           // create a symbolic array of size 10
Zen<int>[] elements = a.ToArray();                 // get the symbolic elements of the array
var solution = Zen.And(
    elements.Aggregate(Zen.Plus) == 100,
    a.All(x => Zen.And(x >= 1, x <= 20))).Solve(); // a = [8,6,13,16,14,15,5,13,5,5]

The type parameter TSize specifies the size of the array. The types _1 through _100 are predefined in the library. To add a custom size, you can create a new struct following this naming convention:

struct _150 { }

<a name="strings-and-sequences"></a>

Sequences, Strings, and Regular Expressions

Zen has a Seq<T> type to represent arbitrarily large sequences of elements of type T. As there is no complete decision procedure for sequences in constraint solvers, queries for sequences may not always terminate, and you may need to use a timeout. If this is not acceptable, you can always use FSeq or FString instead, which will model a finite sequence up to a given size. Sequences also support matching against regular expressions. As an example:

Regex<int> r = Regex.Star(Regex.Char(1)); // zero or more 1s in a Seq<int>

var s1 = Symbolic<Seq<int>>();
var s2 = Symbolic<Seq<int>>();

var c1 = s1.MatchesRegex(r);
var c2 = s1 != Seq.Empty<int>();
var c3 = Not(s2.MatchesRegex(r));
var c4 = s1.Length() == s2.Length();
var solution = And(c1, c2, c3, c4).Solve(); // s1 = [1], s2 = [0]

Zen supports the string type for reasoning about unbounded strings (the string type is implemented as a Seq<char>). Strings also support matching regular expressions. Zen supports a limited subset of regex constructs currently - it supports anchors like $ and ^ but not any other metacharacters like \w,\s,\d,\D,\b or backreferences \1. As an example:

Regex<char> r1 = Regex.Parse("[0-9a-z]+");
Regex<char> r2 = Regex.Parse("(0.)*");

var s = Symbolic<string>();

var c1 = s.MatchesRegex(Regex.Intersect(r1, r2));
var c2 = s.Contains("a0b0c");
var c3 = s.Length() == new BigInteger(10);
var solution = And(c1, c2, c3).Solve(); // s = "020z0a0b0c"

<a name="custom-classes-and-structs"></a>

Custom classes and structs

Zen supports custom class and struct types with some limitations. It will attempt to model all public fields and properties. For these types to work, either (1) the class/struct must also have a default constructor and all properties must be allowed to be set, or (2) there must be a constructor with matching parameter names and types for all the public fields. For example, the following are examples that are and are not allowed:

// this will work because the fields are public
public class Point 
    public int X;
    public int Y;

// this will work because the properties are public and can be set.
public class Point 
    public int X { get; set; }
    public int Y { get; set; }

// this will NOT work because X can not be set.
public class Point 
    public int X { get; }
    public int Y { get; set; }

// this will work as well since there is a constructor with the same parameter names.
// note that _z will not be modeled by Zen.
public class Point 
    public int X { get; }
    public int Y { get; set; }
    private int _z;

    public Point(int x, int y) 
        this.X = x;
        this.Y = y;

<a name="enums"></a>

Enumerated values

Enums in C# are just structs that wrap some backing type. Zen will model enums like any other struct. For example, Zen will model the following enum as a byte:

public enum Origin : byte

By default, Zen does not constraint an enum value to only be one of the enumerated values - it can be any value allowed by the backing type (any value between 0 and 255 in this example instead of just the 3 listed). If you want to add a constraint to ensure the value is only one of those enumerated by the user, you write a function like the following to test if a value is one of those expected:

public Zen<bool> IsValidOrigin(Zen<Origin> origin)
    return Zen.Or(Enum.GetValues<Origin>().Select(x => origin == x));

<a name="zen-attributes"></a>

Zen Attributes

Zen provides two attributes to simplify the creation and manipulation of symbolic objects. The first attribute [ZenObject] can be applied to classes or structs. It uses C# source generators to generate Get and With methods for all public fields and properties.

public class Point 
    public int X { get; set; }
    public int Y { get; set; }

    public static Zen<Point> Add(Zen<Point> p1, Zen<Point> p2)
        return p1.WithX(p1.GetX() + p2.GetX()).WithY(p1.GetY() + p2.GetY());

Note that this requires C# 9.0 and .NET 6 or later to work. In addition, you must add the ZenLib.Generators nuget package to enable code generation. The other attribute supported is the ZenSize attribute, which controls the size of a generated field in an object. For example, to fix the size of a FSeq to 10:

public class Person
    [ZenSize(depth: 10)]
    public FSeq<string> Contacts { get; set; }

<a name="solver-backends"></a>

Solver Backends

Zen currently supports two solvers, one based on the Z3 SMT solver and another based on binary decision diagrams (BDDs). The Find and Zen.Solve APIs provide an option to select one of the two backends and will default to Z3 if left unspecified. The StateSetTransformer API uses the BDD backend. The BDD backend has the limitation that it can only reason about bounded-size objects. This means that it can not reason about values with type BigInteger or string and will throw an exception. Similarly, these types along with FSeq<T>, FSet<T>, and Map<T1, T2> can not be used with transformers.

<a name="solver-timeouts"></a>

Solver Timeouts

Zen supports terminating a call to the solver via the Solve, Maximize, Minimize, and Find methods for the Z3 backend. If the solver times out, it will raise a ZenSolverTimeoutException. For example, you can try to find a solution within 100 milliseconds with the following:

var solverConfig = new ZenLib.Solver.SolverConfig
    SolverType = SolverType.Z3,
    SolverTimeout = TimeSpan.FromMilliseconds(100),

    var solution = Zen.And(constraints).Solve(config: solverConfig);
catch (ZenSolverTimeoutException)
    Console.WriteLine($"a timeout occurred.");

<a name="example-network-acls"></a>

Example: Network ACLs

As a more complete example, the following shows how to use Zen to encode and then verify a simplified network access control list that allows or blocks packets. ACLs generally consist of an ordered collection of match-action rules that apply in sequence with the first applicable rule determining the fate of the packet. We can model an ACL with Zen:

// define a class to model Packets using public properties
public class Packet
    // packet destination ip
    public uint DstIp { get; set; } 
    // packet source ip
    public uint SrcIp { get; set; }

// class representing an ACL with a list of prioritized rules.
public class Acl
    public string Name { get; set; }
    public AclLine[] Lines { get; set; }

    public Zen<bool> Allowed(Zen<Packet> packet)
        return Allowed(packet, 0);

    // compute whether a packet is allowed by the ACL recursively
    private Zen<bool> Allowed(Zen<Packet> packet, int lineNumber)
        if (lineNumber >= this.Lines.Length) 
            return false; // Zen implicitly converts false to Zen<bool>

        var line = this.Lines[lineNumber];

        // if the current line matches, then return the action, otherwise continue to the next line
        return If(line.Matches(packet), line.Action, this.Allowed(packet, lineNumber + 1));

// An ACL line that matches a packet.
public class AclLine
    public bool Action { get; set; }
    public uint DstIpLow { get; set; }
    public uint DstIpHigh { get; set; }
    public uint SrcIpLow { get; set; }
    public uint SrcIpHigh { get; set; }

    // a packet matches a line if it falls within the specified ranges.
    public Zen<bool> Matches(Zen<Packet> packet)
        return And(
            packet.GetDstIp() >= this.DstIpLow,
            packet.GetDstIp() <= this.DstIpHigh,
            packet.GetSrcIp() >= this.SrcIpLow,
            packet.GetSrcIp() <= this.SrcIpHigh);

<a name="implementation"></a>

Implementation Details

Zen builds an abstract syntax tree (AST) for a given user function and then leverages C#'s reflection capabilities to interpret, compile, and symbolically evaluate the AST.

<a name="contributing"></a>


This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Product Compatible and additional computed target framework versions.
.NET net5.0 was computed.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed. 
.NET Core netcoreapp3.0 was computed.  netcoreapp3.1 was computed. 
.NET Standard netstandard2.1 is compatible. 
MonoAndroid monoandroid was computed. 
MonoMac monomac was computed. 
MonoTouch monotouch was computed. 
Tizen tizen60 was computed. 
Xamarin.iOS xamarinios was computed. 
Xamarin.Mac xamarinmac was computed. 
Xamarin.TVOS xamarintvos was computed. 
Xamarin.WatchOS xamarinwatchos was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
3.1.6 342 10/23/2023
3.1.5 178 8/30/2023
3.1.4 195 8/28/2023
3.1.3 248 7/14/2023
3.1.2 343 2/28/2023
3.1.1 531 9/22/2022
3.1.0 421 9/8/2022
3.0.0 390 8/25/2022
2.3.0 441 8/12/2022
2.2.9 380 8/12/2022
2.2.8 430 8/11/2022
2.2.7 423 8/8/2022
2.2.6 384 8/4/2022
2.2.5 430 7/27/2022
2.2.4 501 5/31/2022
2.2.3 415 5/20/2022
2.2.2 501 4/14/2022
2.2.1 446 4/8/2022
2.2.0 445 4/7/2022
2.1.9 454 3/24/2022
2.1.8 436 3/10/2022
2.1.7 438 3/5/2022
2.1.6 430 3/3/2022
2.1.5 429 3/2/2022
2.1.4 443 2/23/2022
2.1.3 421 2/18/2022
2.1.2 428 2/14/2022
2.1.1 419 2/14/2022
2.1.0 437 2/11/2022
2.0.0 433 2/9/2022
1.3.2 459 1/30/2022
1.3.1 312 1/5/2022
1.3.0 369 11/9/2021
1.2.9 367 10/28/2021
1.2.8 379 10/19/2021
1.2.7 317 10/18/2021
1.2.6 478 10/17/2021
1.2.5 332 10/16/2021
1.2.4 338 10/15/2021
1.2.3 354 10/11/2021
1.2.2 361 10/8/2021
1.2.1 323 10/6/2021
1.2.0 309 10/5/2021
1.1.9 354 8/31/2021
1.1.8 335 7/21/2021
1.1.7 351 7/15/2021
1.1.6 367 6/3/2021
1.1.5 611 1/5/2021
1.1.4 480 12/16/2020
1.1.3 402 10/13/2020
1.1.2 428 10/7/2020
1.1.1 484 10/2/2020
1.1.0 429 9/29/2020
1.0.9 425 9/25/2020
1.0.8 454 9/23/2020
1.0.7 505 9/17/2020
1.0.6 519 9/17/2020
1.0.5 885 7/15/2020
1.0.4 541 6/14/2020
1.0.3 558 6/6/2020
1.0.2 464 5/6/2020
1.0.1 471 5/6/2020
1.0.0 493 5/6/2020