YoloV8.Gpu 3.0.0

There is a newer version of this package available.
See the version list below for details.
dotnet add package YoloV8.Gpu --version 3.0.0                
NuGet\Install-Package YoloV8.Gpu -Version 3.0.0                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="YoloV8.Gpu" Version="3.0.0" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add YoloV8.Gpu --version 3.0.0                
#r "nuget: YoloV8.Gpu, 3.0.0"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install YoloV8.Gpu as a Cake Addin
#addin nuget:?package=YoloV8.Gpu&version=3.0.0

// Install YoloV8.Gpu as a Cake Tool
#tool nuget:?package=YoloV8.Gpu&version=3.0.0                

YOLOv8

Use YOLOv8 in real-time for object detection, instance segmentation, pose estimation and image classification, via ONNX Runtime

Install

The YoloV8 project is available in two nuget packages: YoloV8 and YoloV8.Gpu, if you use with CPU add the YoloV8 package reference to your project (contains reference to Microsoft.ML.OnnxRuntime package)

dotnet add package YoloV8 --version 1.6.0

If you use with GPU you need to add the YoloV8.Gpu package reference (contains reference to Microsoft.ML.OnnxRuntime.Gpu package)

dotnet add package YoloV8.Gpu --version 1.6.0

Use

Export the model from PyTorch to ONNX format:

Run the following python code to export the model to ONNX format:

from ultralytics import YOLO

# Load a model
model = YOLO('path/to/best')

# export the model to ONNX format
model.export(format='onnx')

Use in exported model with C#:

using Compunet.YoloV8;
using SixLabors.ImageSharp;

using var predictor = new YoloV8(model);

var result = predictor.Detect("path/to/image");
// or
var result = await predictor.DetectAsync("path/to/image");

Console.WriteLine(result);

Plotting

You can to plot the input image for preview the model prediction results, this code demonstrates how to perform a prediction with the model and then plot the prediction results on the input image and save to file:

using Compunet.YoloV8;
using Compunet.YoloV8.Plotting;
using SixLabors.ImageSharp;

var imagePath = "path/to/image";

using var predictor = new YoloV8("path/to/model");

var result = await predictor.PoseAsync(imagePath);

using var image = Image.Load(imagePath);
using var ploted = await result.PlotImageAsync(image);

ploted.Save("./pose_demo.jpg")

Demo Images:

Detection:

detect_demo!

Pose:

pose_demo!

Segmentation:

seg_demo!

License

MIT License

Product Compatible and additional computed target framework versions.
.NET net8.0 is compatible.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
5.3.0 108 10/30/2024 5.3.0 is deprecated because it is no longer maintained.
5.2.0 403 10/16/2024
5.1.1 87 10/15/2024
5.1.0 196 10/8/2024
5.0.4 160 9/29/2024
5.0.3 102 9/26/2024
5.0.2 101 9/24/2024
5.0.1 233 9/15/2024
5.0.0 115 9/15/2024
4.2.0 284 8/23/2024
4.1.7 656 6/27/2024
4.1.6 269 6/10/2024
4.1.5 667 4/14/2024
4.1.4 140 4/14/2024
4.0.0 510 3/6/2024
3.1.1 386 2/4/2024
3.1.0 183 1/29/2024
3.0.0 2,088 11/27/2023
2.0.1 1,170 10/10/2023
2.0.0 258 9/27/2023
1.6.0 254 9/21/2023
1.5.0 200 9/15/2023
1.4.0 245 9/8/2023