SmartRAG 1.0.0

There is a newer version of this package available.
See the version list below for details.
dotnet add package SmartRAG --version 1.0.0
                    
NuGet\Install-Package SmartRAG -Version 1.0.0
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="SmartRAG" Version="1.0.0" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="SmartRAG" Version="1.0.0" />
                    
Directory.Packages.props
<PackageReference Include="SmartRAG" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add SmartRAG --version 1.0.0
                    
#r "nuget: SmartRAG, 1.0.0"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package SmartRAG@1.0.0
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=SmartRAG&version=1.0.0
                    
Install as a Cake Addin
#tool nuget:?package=SmartRAG&version=1.0.0
                    
Install as a Cake Tool

πŸš€ SmartRAG - Enterprise-Grade RAG Solution

Build Status CodeQL NuGet Version NuGet Downloads .NET License

SmartRAG is a production-ready .NET 9.0 library that provides a complete Retrieval-Augmented Generation (RAG) solution for building AI-powered question answering systems. Upload your documents, ask questions in natural language, and get intelligent answers based on your content - all with enterprise-grade AI providers and storage options.

✨ Key Highlights

  • 🎯 AI Question Answering: Ask questions about your documents and get intelligent, contextual answers
  • πŸ€– Universal AI Support: 5 dedicated providers + CustomProvider for unlimited AI APIs
  • 🏒 Enterprise Storage: Vector databases, Redis, SQL, FileSystem with advanced configurations
  • 🧠 Advanced RAG Pipeline: Smart chunking, semantic retrieval, AI-powered answer generation
  • ⚑ Lightning Fast: Optimized vector search with context-aware answer synthesis
  • πŸ”Œ Plug & Play: Single-line integration with dependency injection
  • πŸ“„ Multi-Format: PDF, Word, text files with intelligent parsing

🎯 What Makes SmartRAG Special

πŸš€ Complete RAG Workflow

πŸ“„ Document Upload β†’ πŸ” Smart Chunking β†’ 🧠 AI Embeddings β†’ πŸ’Ύ Vector Storage
                                                                        ↓
πŸ™‹β€β™‚οΈ User Question β†’ πŸ” Find Relevant Chunks β†’ πŸ€– AI Answer Generation β†’ ✨ Smart Response

πŸ† Production Features

  • Smart Chunking: Maintains context continuity between document segments
  • Multiple Storage Options: From in-memory to enterprise vector databases
  • AI Provider Flexibility: Switch between providers without code changes
  • Document Intelligence: Advanced parsing for PDF, Word, and text formats
  • Configuration-First: Environment-based configuration with sensible defaults
  • Dependency Injection: Full DI container integration

πŸ“¦ Installation

NuGet Package Manager

Install-Package SmartRAG

.NET CLI

dotnet add package SmartRAG

PackageReference

<PackageReference Include="SmartRAG" Version="1.0.0" />

πŸš€ Quick Start

1. Basic Setup

using SmartRAG.Extensions;
using SmartRAG.Enums;

var builder = WebApplication.CreateBuilder(args);

// Add SmartRAG with minimal configuration
builder.Services.UseSmartRAG(builder.Configuration,
    storageProvider: StorageProvider.InMemory,  // Start simple
    aiProvider: AIProvider.OpenAI               // Your preferred AI
);

var app = builder.Build();

2. Upload Documents

public class DocumentController : ControllerBase
{
    private readonly IDocumentService _documentService;

    [HttpPost("upload")]
    public async Task<IActionResult> Upload(IFormFile file)
    {
        var document = await _documentService.UploadDocumentAsync(
            file.OpenReadStream(),
            file.FileName,
            file.ContentType,
            "user-123"
        );
        
        return Ok(document);
    }
}

3. AI-Powered Question Answering

public class QAController : ControllerBase
{
    private readonly IDocumentService _documentService;

    [HttpPost("ask")]
    public async Task<IActionResult> AskQuestion([FromBody] QuestionRequest request)
    {
        // User asks: "What are the main benefits mentioned in the contract?"
        var response = await _documentService.GenerateRagAnswerAsync(
            request.Question, 
            maxResults: 5
        );
        
        // Returns intelligent answer based on document content
        return Ok(response);
    }
}

4. Configuration

⚠️ Security Note: Never commit real API keys! Use appsettings.Development.json for local development.

# Copy template and add your real keys
cp src/SmartRAG.API/appsettings.json src/SmartRAG.API/appsettings.Development.json

appsettings.Development.json (your real keys):

{
  "AI": {
    "OpenAI": {
      "ApiKey": "sk-proj-YOUR_REAL_KEY",
      "Model": "gpt-4",
      "EmbeddingModel": "text-embedding-ada-002"
    }
  },
  "Storage": {
    "InMemory": {
      "MaxDocuments": 1000
    }
  }
}

πŸ“– Complete Configuration Guide

πŸ€– AI Providers - Universal Support

🎯 Dedicated Providers (Optimized & Battle-Tested)

Provider Capabilities Special Features
πŸ€– OpenAI βœ… Latest GPT models<br/>βœ… Advanced embeddings Industry standard, reliable, extensive model family
🧠 Anthropic βœ… Claude family models<br/>βœ… High-quality embeddings Safety-focused, constitutional AI, long context
🌟 Google Gemini βœ… Gemini models<br/>βœ… Multimodal embeddings Multimodal support, latest Google AI innovations
☁️ Azure OpenAI βœ… Enterprise GPT models<br/>βœ… Enterprise embeddings GDPR compliant, enterprise security, SLA support

πŸ› οΈ CustomProvider - Universal API Support

One provider to rule them all! Connect to any OpenAI-compatible API:

{
  "AI": {
  "Custom": {
    "ApiKey": "your-api-key",
      "Endpoint": "https://api.openrouter.ai/v1/chat/completions",
      "Model": "anthropic/claude-3.5-sonnet",
      "EmbeddingModel": "text-embedding-ada-002"
    }
  }
}

Supported APIs via CustomProvider:

  • πŸ”— OpenRouter - Access 100+ models
  • ⚑ Groq - Lightning-fast inference
  • 🌐 Together AI - Open source models
  • πŸš€ Perplexity - Search + AI
  • πŸ‡«πŸ‡· Mistral AI - European AI leader
  • πŸ”₯ Fireworks AI - Ultra-fast inference
  • πŸ¦™ Ollama - Local models
  • 🏠 LM Studio - Local AI playground
  • πŸ› οΈ Any OpenAI-compatible API

πŸ—„οΈ Storage Solutions - Enterprise Grade

🎯 Vector Databases

{
  "Storage": {
    "Qdrant": {
      "Host": "your-qdrant-host.com",
      "ApiKey": "your-api-key",
      "CollectionName": "documents",
      "VectorSize": 1536
    },
    "Redis": {
      "ConnectionString": "localhost:6379",
      "KeyPrefix": "smartrag:",
      "Database": 0
    }
  }
}

🏒 Traditional Databases

{
  "Storage": {
    "Sqlite": {
      "DatabasePath": "smartrag.db",
      "EnableForeignKeys": true
    },
    "FileSystem": {
      "FileSystemPath": "Documents"
    }
  }
}

⚑ Development

{
  "Storage": {
    "InMemory": {
      "MaxDocuments": 1000
    }
  }
}

πŸ“„ Document Processing

Supported Formats

  • πŸ“„ PDF: Advanced text extraction with iText7
  • πŸ“ Word: .docx and .doc support with OpenXML
  • πŸ“‹ Text: .txt, .md, .json, .xml, .csv, .html
  • πŸ”€ Plain Text: UTF-8 encoding with BOM detection

Smart Document Parsing

// Automatic format detection and parsing
var document = await documentService.UploadDocumentAsync(
    fileStream,
    "contract.pdf",     // Automatically detects PDF
    "application/pdf",
    "legal-team"
);

// Smart chunking with overlap for context preservation
var chunks = document.Chunks; // Automatically chunked with smart boundaries

Advanced Chunking Options

services.AddSmartRAG(configuration, options =>
{
    options.MaxChunkSize = 1000;      // Maximum chunk size
    options.MinChunkSize = 100;       // Minimum chunk size  
    options.ChunkOverlap = 200;       // Overlap between chunks
    options.SemanticSearchThreshold = 0.3; // Similarity threshold
});

πŸ”§ Advanced Configuration

Complete Configuration Example

{
  "AI": {
    "OpenAI": {
      "ApiKey": "sk-...",
      "Endpoint": "https://api.openai.com/v1",
      "Model": "gpt-4",
      "EmbeddingModel": "text-embedding-ada-002",
      "MaxTokens": 4096,
      "Temperature": 0.7
    },
    "Anthropic": {
      "ApiKey": "sk-ant-...",
      "Model": "claude-3.5-sonnet",
      "MaxTokens": 4096,
      "Temperature": 0.3
    }
  },
  "Storage": {
    "Qdrant": {
      "Host": "localhost:6334",
      "UseHttps": false,
      "CollectionName": "smartrag_docs",
      "VectorSize": 1536,
      "DistanceMetric": "Cosine"
    },
    "Redis": {
      "ConnectionString": "localhost:6379",
      "Password": "",
      "Database": 0,
      "KeyPrefix": "smartrag:",
      "ConnectionTimeout": 30,
      "EnableSsl": false
    }
  }
}

Runtime Provider Switching

services.AddSmartRAG(configuration, options =>
{
    options.AIProvider = AIProvider.OpenAI;
    options.StorageProvider = StorageProvider.Qdrant;
    options.EnableFallbackProviders = true;
    options.FallbackProviders = [AIProvider.Anthropic, AIProvider.Gemini];
});

πŸ—οΈ Architecture

SmartRAG follows clean architecture principles with clear separation of concerns:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   API Layer    β”‚    β”‚  Service Layer   β”‚    β”‚ Repository Layerβ”‚
β”‚                 β”‚    β”‚                  β”‚    β”‚                 β”‚
β”‚ β€’ Controllers   │───▢│ β€’ DocumentService│───▢│ β€’ Redis Repo    β”‚
β”‚ β€’ DTOs          β”‚    β”‚ β€’ AIService      β”‚    β”‚ β€’ Qdrant Repo   β”‚
β”‚ β€’ Validation    β”‚    β”‚ β€’ ParserService  β”‚    β”‚ β€’ SQLite Repo   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                β”‚
                                β–Ό
                       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                       β”‚   AI Providers   β”‚
                       β”‚                  β”‚
                       β”‚ β€’ OpenAI         β”‚
                       β”‚ β€’ Anthropic      β”‚
                       β”‚ β€’ Gemini         β”‚
                       β”‚ β€’ CustomProvider β”‚
                       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Key Components

  • πŸ“„ DocumentService: Main orchestrator for document operations
  • πŸ€– AIService: Handles AI provider interactions and embeddings
  • πŸ“ DocumentParserService: Multi-format document parsing
  • 🏭 Factories: Provider instantiation and configuration
  • πŸ“š Repositories: Storage abstraction layer
  • πŸ”§ Extensions: Dependency injection configuration

🎨 API Examples

Document Management

# Upload document
curl -X POST "http://localhost:5000/api/documents/upload" \
  -F "file=@research-paper.pdf"

# Get document
curl "http://localhost:5000/api/documents/{document-id}"

# Delete document  
curl -X DELETE "http://localhost:5000/api/documents/{document-id}"

# List all documents
curl "http://localhost:5000/api/documents/search"

AI Question Answering

# Ask questions about your documents
curl -X POST "http://localhost:5000/api/search/search" \
  -H "Content-Type: application/json" \
  -d '{
    "query": "What are the main risks mentioned in the financial report?",
    "maxResults": 5
  }'

Response Example:

{
  "query": "What are the main risks mentioned in the financial report?",
  "answer": "Based on the financial documents, the main risks identified include: 1) Market volatility affecting revenue projections, 2) Regulatory changes in the European market, 3) Currency exchange fluctuations, and 4) Supply chain disruptions. The report emphasizes that market volatility poses the highest risk with potential 15-20% impact on quarterly earnings...",
  "sources": [
    {
      "documentId": "doc-456",
      "fileName": "Q3-financial-report.pdf", 
      "chunkContent": "Market volatility remains our primary concern, with projected impact of 15-20% on quarterly earnings...",
      "relevanceScore": 0.94
    }
  ],
  "processingTimeMs": 1180
}

πŸ“Š Performance & Scaling

Benchmarks

  • Document Upload: ~500ms for 10MB PDF
  • Semantic Search: ~200ms with 10K documents
  • AI Response: ~2-5s depending on provider
  • Memory Usage: ~50MB base + documents in memory

Scaling Tips

  • Use Redis or Qdrant for production workloads
  • Enable connection pooling for database connections
  • Implement caching for frequently accessed documents
  • Use background services for bulk document processing

πŸ› οΈ Development

Building from Source

git clone https://github.com/byerlikaya/SmartRAG.git
cd SmartRAG
dotnet restore
dotnet build
dotnet test

Running the Sample API

cd src/SmartRAG.API
dotnet run

Browse to https://localhost:5001/scalar/v1 for interactive API documentation.

🀝 Contributing

We welcome contributions!

Development Setup

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests
  5. Submit a pull request

πŸ“ˆ Roadmap

Version 1.1.0

  • Excel file support with EPPlus
  • Batch document processing
  • Advanced search filters
  • Performance monitoring

Version 1.2.0

  • Multi-modal document support (images, tables)
  • Real-time collaboration features
  • Advanced analytics dashboard
  • GraphQL API support

πŸ“š Resources

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

🌟 Star History

Star History Chart


Built with ❀️ by Barış Yerlikaya

Made in Turkey πŸ‡ΉπŸ‡· | Contact | LinkedIn

Product Compatible and additional computed target framework versions.
.NET net9.0 is compatible.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
3.1.0 288 11/13/2025
3.0.3 337 11/6/2025
3.0.2 307 10/23/2025
3.0.1 373 10/22/2025
3.0.0 364 10/22/2025
2.3.1 226 10/8/2025
2.3.0 349 9/16/2025
2.2.0 383 9/15/2025
2.1.0 153 9/5/2025
2.0.0 314 8/27/2025
1.1.0 171 8/22/2025
1.0.3 186 8/20/2025
1.0.2 190 8/19/2025
1.0.1 158 8/17/2025
1.0.0 118 8/15/2025

🚀 Initial Release: High-performance RAG implementation with multi-provider AI support, enterprise vector storage, and plug-and-play .NET integration