Levenshtypo 1.3.0

There is a newer version of this package available.
See the version list below for details.
dotnet add package Levenshtypo --version 1.3.0                
NuGet\Install-Package Levenshtypo -Version 1.3.0                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="Levenshtypo" Version="1.3.0" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add Levenshtypo --version 1.3.0                
#r "nuget: Levenshtypo, 1.3.0"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install Levenshtypo as a Cake Addin
#addin nuget:?package=Levenshtypo&version=1.3.0

// Install Levenshtypo as a Cake Tool
#tool nuget:?package=Levenshtypo&version=1.3.0                

Levenshtypo - a .NET fuzzy matching string dictionary

Levenshtypo is a library which allows you to search large data sets by fuzzy matching the key strings.

The dataset is loaded upfront as a sequence of key-value pairs. Once loaded it allows searching for the values which are up to a certain Levenshtein Distance away from a query string.

Levenshtein Distance is the number of character insertions, deletions or substitutions required to transform one string into another.

Installation

Install via Nuget.

Getting Started

// Start with a dataset
IEnumerable<KeyValuePair<string, object>> dataset = ...;

// Index the dataset in a levenshtrie. The levenshtrie should be stored for re-use.
Levenshtrie<object> levenshtrie = Levenshtrie<object>.Create(dataset);

// Search the dataset for keys with edit distance 2 from "hello"
object[] results = levenshtrie.Search("hello", 2);

Samples

These samples and more can be found in the samples directory.

<details> <summary>Suggest similar words</summary>

public class TypoSuggestionExample
{
    private readonly Levenshtrie<string> _trie;

    public TypoSuggestionExample(IEnumerable<string> words)
    {
        _trie = Levenshtrie.CreateStrings(words, ignoreCase: true);
    }

    public string[] GetSimilarWords(string word)
    {
        LevenshtrieSearchResult<string>[] searchResults = _trie.Search(word, maxEditDistance: 2, metric: LevenshtypoMetric.RestrictedEdit);
        return searchResults
            .OrderBy(r => r.Distance) // Most likely word first
            .Select(r => r.Result)
            .ToArray(); 
    }
}

</details>

<details> <summary>Find whether a string matches blacklist</summary>

public class BlacklistDetectionExample
{
    private readonly Levenshtrie<string> _trie;

    public BlacklistDetectionExample(IEnumerable<string> blacklist)
    {
        _trie = Levenshtrie.CreateStrings(blacklist, ignoreCase: true);
    }

    public bool IsBlacklisted(string word)
    {
        IEnumerable<LevenshtrieSearchResult<string>> searchResults = _trie.EnumerateSearch(word, maxEditDistance: 1);
        return searchResults.Any();
    }
}

</details>

</details>

<details> <summary>Quickly check whether a list of strings matches an input</summary>

// Benchmarks below show that a naive implementation,
// even if it is well written, is 10x slower than using
// an automaton.
// Benchmark run against English language dataset.
//
// | Method          | Mean       | Error     | StdDev    | Allocated |
// |-----------------|-----------:|----------:|----------:|----------:|
// | Using_naive     | 103.190 ms | 1.4706 ms | 1.3756 ms |     214 B |
// | Using_automaton |   8.161 ms | 0.0469 ms | 0.0439 ms |      12 B |

public static string[] Search(string searchWord, string[] against)
{
    var automaton = LevenshtomatonFactory.Instance.Construct(searchWord, maxEditDistance: 2);

    var results = new List<string>();

    foreach (var word in against)
    {
        // Naive version would be:
        // bool matches = LevenshteinDistance.Levenshtein(searchWord, word) <= 2;

        // Automaton version is:
        bool matches = automaton.Matches(word);
        if (matches)
        {
            results.Add(word);
        }
    }

    return results.ToArray();
}

</details>

<details> <summary>Customize search e.g. find words similar to both of the two inputs</summary>

This example highlights how to write custom code to traverse the Levenshtrie. Other examples would be only allowing character edits after a certain string position, or only accepting strings of some specific length. These and more can be achieved through custom implementations of ILevenshtomatonExecutionState.

public class BooleanCombinationsExample
{
    private readonly Levenshtrie<string> _trie;

    public BooleanCombinationsExample(IEnumerable<string> words)
    {
        _trie = Levenshtrie<string>.Create(
            words.Select(w => new KeyValuePair<string, string>(w, w)),
            ignoreCase: true);
    }

    public string[] SearchCommon(string a, string b)
    {
        // This returns words within distance 1 of both a and b
        return _trie.Search(
            new AndLevenshtomatonExecutionState(
                LevenshtomatonFactory.Instance.Construct(a, 1).Start(),
                LevenshtomatonFactory.Instance.Construct(b, 1).Start()));
    }

    private struct AndLevenshtomatonExecutionState : ILevenshtomatonExecutionState<AndLevenshtomatonExecutionState>
    {
        private LevenshtomatonExecutionState _state1;
        private LevenshtomatonExecutionState _state2;

        public AndLevenshtomatonExecutionState(
            LevenshtomatonExecutionState state1,
            LevenshtomatonExecutionState state2)
        {
            _state1 = state1;
            _state2 = state2;
        }

        public bool MoveNext(Rune c, out AndLevenshtomatonExecutionState next)
        {
            if (_state1.MoveNext(c, out var nextState1) && _state2.MoveNext(c, out var nextState2))
            {
                next = new AndLevenshtomatonExecutionState(nextState1, nextState2);
                return true;
            }

            next = default;
            return false;
        }

        public bool IsFinal => _state1.IsFinal && _state2.IsFinal;
    }
}

</details>

Limitations

  • No custom cultures (so far).
  • Maximum Levenshtein Distance of 3.

Performance

The English Language dataset used in the benchmarks contains approximately 465,000 words.

<details> <summary>Search all English Language with a fuzzy key</summary>

  • Naive: Compute Levenshtein Distance against all words.
  • Levenshtypo_All: This library, with all results buffered into an array.
  • Levenshtypo_Lazy: This library, with lazy evaluation (IEnumerable).
  • Levenshtypo_Any: This library, with lazy evaluation (IEnumerable), stopping at the first result.
  • Dictionary: .NET Dictionary which only works for distance of 0.
Method Mean Allocated
Distance0_Levenshtypo_All 361.444 ns 240 B
Distance0_Levenshtypo_Lazy 975.169 ns 480 B
Distance0_Levenshtypo_Any 614.947 ns 480 B
Distance0_Dictionary 9.128 ns -
Distance0_Naive 813,419.616 ns 89 B
Distance1_Levenshtypo_All 19,008.096 ns 536 B
Distance1_Levenshtypo_Lazy 38,615.868 ns 480 B
Distance1_Levenshtypo_Any 25,805.258 ns 480 B
Distance1_Naive 73,459,775.661 ns 193 B
Distance2_Levenshtypo_All 276,157.020 ns 2600 B
Distance2_Levenshtypo_Lazy 440,689.397 ns 480 B
Distance2_Levenshtypo_Any 215,542.244 ns 480 B
Distance2_Naive 68,999,745.833 ns 700 B
Distance3_Levenshtypo_All 1,617,282.340 ns 25985 B
Distance3_Levenshtypo_Lazy 2,452,026.901 ns 1123 B
Distance3_Levenshtypo_Any 231,972.804 ns 584 B
Distance3_Naive 71,845,738.624 ns 4369 B

</details>

<details> <summary>Load all English Language dataset</summary>

  • Levenshtypo: This library.
  • Dictionary: .NET Dictionary for comparison.
Method Mean Allocated
English_Dictionary 31,755.45 μs 35524.19 KB
English_Levenshtypo 142,010.47 μs 145145.15 KB

</details>

References

The algorithm in this library is based on the 2002 paper Fast String Correction with Levenshtein-Automata by Klaus Schulz and Stoyan Mihov.

I used the following blog posts to further help understand the algorithm.

I used the following repository to obtain the list of English words, used in tests.

Product Compatible and additional computed target framework versions.
.NET net6.0 is compatible.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 is compatible.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.
  • net6.0

    • No dependencies.
  • net8.0

    • No dependencies.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
1.4.0 11,420 8/21/2024
1.3.0 6,942 8/12/2024
1.2.0 110 8/9/2024
1.1.0 67 8/2/2024
1.0.0 64 7/31/2024