InfluxDB.Client.Linq 4.17.0-dev.14189

This is a prerelease version of InfluxDB.Client.Linq.
There is a newer version of this package available.
See the version list below for details.
dotnet add package InfluxDB.Client.Linq --version 4.17.0-dev.14189                
NuGet\Install-Package InfluxDB.Client.Linq -Version 4.17.0-dev.14189                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="InfluxDB.Client.Linq" Version="4.17.0-dev.14189" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add InfluxDB.Client.Linq --version 4.17.0-dev.14189                
#r "nuget: InfluxDB.Client.Linq, 4.17.0-dev.14189"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install InfluxDB.Client.Linq as a Cake Addin
#addin nuget:?package=InfluxDB.Client.Linq&version=4.17.0-dev.14189&prerelease

// Install InfluxDB.Client.Linq as a Cake Tool
#tool nuget:?package=InfluxDB.Client.Linq&version=4.17.0-dev.14189&prerelease                

InfluxDB.Client.Linq

The library supports to use a LINQ expression to query the InfluxDB.

Documentation

This section contains links to the client library documentation.

Usage

How to start

First, add the library as a dependency for your project:

# For actual version please check: https://www.nuget.org/packages/InfluxDB.Client.Linq/

dotnet add package InfluxDB.Client.Linq --version 1.17.0-dev.linq.17

Next, you should add additional using statement to your program:

using InfluxDB.Client.Linq;

The LINQ query depends on QueryApiSync, you could create an instance of QueryApiSync by:

var client = new InfluxDBClient("http://localhost:8086", "my-token");
var queryApi = client.GetQueryApiSync();

In the following examples we assume that the Sensor entity is defined as:

class Sensor
{
    [Column("sensor_id", IsTag = true)] 
    public string SensorId { get; set; }

    /// <summary>
    /// "production" or "testing"
    /// </summary>
    [Column("deployment", IsTag = true)]
    public string Deployment { get; set; }

    /// <summary>
    /// Value measured by sensor
    /// </summary>
    [Column("data")]
    public float Value { get; set; }

    [Column(IsTimestamp = true)] 
    public DateTime Timestamp { get; set; }
}

Time Series

The InfluxDB uses concept of TimeSeries - a collection of data that shares a measurement, tag set, and bucket. You always operate on each time-series, if you querying data with Flux.

Imagine that you have following data:

sensor,deployment=production,sensor_id=id-1 data=15
sensor,deployment=testing,sensor_id=id-1 data=28
sensor,deployment=testing,sensor_id=id-1 data=12
sensor,deployment=production,sensor_id=id-1 data=89

The corresponding time series are:

  • sensor,deployment=production,sensor_id=id-1
  • sensor,deployment=testing,sensor_id=id-1

If you query your data with following Flux:

from(bucket: "my-bucket")
  |> range(start: 0)
  |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
  |> drop(columns: ["_start", "_stop", "_measurement"])
  |> limit(n:1)

The result will be one item for each time-series:

sensor,deployment=production,sensor_id=id-1 data=15
sensor,deployment=testing,sensor_id=id-1 data=28

and this is also way how this LINQ driver works.

The driver supposes that you are querying over one time-series.

There is a way how to change this configuration:

Enable querying multiple time-series

var settings = new QueryableOptimizerSettings{QueryMultipleTimeSeries = true};
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", _queryApi, settings)
    select s;

The group() function is way how to query multiple time-series and gets correct results.

The following query works correctly:

from(bucket: "my-bucket")
  |> range(start: 0)
  |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
  |> drop(columns: ["_start", "_stop", "_measurement"])
  |> group()
  |> limit(n:1)

and corresponding result:

sensor,deployment=production,sensor_id=id-1 data=15

Do not used this functionality if it is not required because it brings a performance costs caused by sorting:

Group does not guarantee sort order

The group() does not guarantee sort order of output records. To ensure data is sorted correctly, use orderby expression.

Client Side Evaluation

The library attempts to evaluate a query on the server as much as possible. The client side evaluations is required for aggregation function if there is more then one time series.

If you want to count your data with following Flux:

from(bucket: "my-bucket")
  |> range(start: 0)
  |> drop(columns: ["_start", "_stop", "_measurement"])
  |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
  |> stateCount(fn: (r) => true, column: "linq_result_column") 
  |> last(column: "linq_result_column") 
  |> keep(columns: ["linq_result_column"])

The result will be one count for each time-series:

#group,false,false,false
#datatype,string,long,long
#default,_result,,
,result,table,linq_result_column
,,0,1
,,0,1

and client has to aggregate this multiple results into one scalar value.

Operators that could cause client side evaluation:

  • Count
  • CountLong

TL;DR

Perform Query

The LINQ query requires bucket and organization as a source of data. Both of them could be name or ID.

var query = (from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.SensorId == "id-1"
    where s.Value > 12
    where s.Timestamp > new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
    where s.Timestamp < new DateTime(2021, 01, 10, 5, 10, 0, DateTimeKind.Utc)
    orderby s.Timestamp
    select s)
    .Take(2)
    .Skip(2);

var sensors = query.ToList();

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 2019-11-16T08:20:15Z, stop: 2021-01-10T05:10:00Z) 
    |> filter(fn: (r) => (r["sensor_id"] == "id-1")) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] > 12)) 
    |> limit(n: 2, offset: 2)

Filtering

The range() and filter() are pushdown functions that allow push their data manipulation down to the underlying data source rather than storing and manipulating data in memory. Using pushdown functions at the beginning of query we greatly reduce the amount of server memory necessary to run a query.

The LINQ provider needs to aligns fields within each input table that have the same timestamp to column-wise format:

From
_time _value _measurement _field
1970-01-01T00:00:00.000000001Z 1.0 "m1" "f1"
1970-01-01T00:00:00.000000001Z 2.0 "m1" "f2"
1970-01-01T00:00:00.000000002Z 3.0 "m1" "f1"
1970-01-01T00:00:00.000000002Z 4.0 "m1" "f2"
To
_time _measurement f1 f2
1970-01-01T00:00:00.000000001Z "m1" 1.0 2.0
1970-01-01T00:00:00.000000002Z "m1" 3.0 4.0

For that reason we need to use the pivot() function. The pivot is heavy and should be used at the end of our Flux query.

There is an also possibility to disable appending pivot by:

var optimizerSettings =
    new QueryableOptimizerSettings
    {
        AlignFieldsWithPivot = false
    };
    
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi, optimizerSettings)
    select s;

Mapping LINQ filters

For the best performance on the both side - server, LINQ provider we maps the LINQ expressions to FLUX query following way:

Filter by Timestamp

Mapped to range().

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp >= new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
    select s;

var sensors = query.ToList();

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 2019-11-16T08:20:15ZZ) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
Filter by Tag

Mapped to filter() before pivot().

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.SensorId == "id-1"
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0)
    |> filter(fn: (r) => (r["sensor_id"] == "id-1"))  
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
Filter by Field

The filter by field has to be after the pivot() because we want to select all fields from pivoted table.

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value < 28
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0)
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")  
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] < 28))

If we move the filter() for fields before the pivot() then we will gets wrong results:

Data
m1 f1=1,f2=2 1
m1 f1=3,f2=4 2
Without filter
from(bucket: "my-bucket") 
    |> range(start: 0)
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])

Results:

_time f1 f2
1970-01-01T00:00:00.000000001Z 1.0 2.0
1970-01-01T00:00:00.000000002Z 3.0 4.0
Filter before pivot()

filter: f1 > 0

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> filter(fn: (r) => (r["_field"] == "f1" and r["_value"] > 0))
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])

Results:

_time f1
1970-01-01T00:00:00.000000001Z 1.0
1970-01-01T00:00:00.000000002Z 3.0

Time Range Filtering

The time filtering expressions are mapped to Flux range() function. This function has start and stop parameters with following behaviour: start <= _time < stop:

Results include records with _time values greater than or equal to the specified start time and less than the specified stop time.

This means that we have to add one nanosecond to start if we want timestamp greater than and also add one nanosecond to stop if we want to timestamp lesser or equal than.

Example 1:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp > new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
    where s.Timestamp < new DateTime(2021, 01, 10, 5, 10, 0, DateTimeKind.Utc)
    select s;

var sensors = query.ToList();

Flux Query:

start_shifted = int(v: time(v: "2019-11-16T08:20:15Z")) + 1

from(bucket: "my-bucket") 
    |> range(start: time(v: start_shifted), stop: 2021-01-10T05:10:00Z)
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
Example 2:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp >= new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
    where s.Timestamp <= new DateTime(2021, 01, 10, 5, 10, 0, DateTimeKind.Utc)
    select s;

var sensors = query.ToList();

Flux Query:

stop_shifted = int(v: time(v: "2021-01-10T05:10:00Z")) + 1

from(bucket: "my-bucket") 
    |> range(start: 2019-11-16T08:20:15Z, stop: time(v: stop_shifted)) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
Example 3:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp >= new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
    select s;

var sensors = query.ToList();

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 2019-11-16T08:20:15ZZ) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
Example 4:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp <= new DateTime(2021, 01, 10, 5, 10, 0, DateTimeKind.Utc)
    select s;

var sensors = query.ToList();

Flux Query:

stop_shifted = int(v: time(v: "2021-01-10T05:10:00Z")) + 1

from(bucket: "my-bucket") 
    |> range(start: 0, stop: time(v: stop_shifted))
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
Example 5:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp == new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
    select s;

var sensors = query.ToList();

Flux Query:

stop_shifted = int(v: time(v: "2019-11-16T08:20:15Z")) + 1

from(bucket: "my-bucket") 
    |> range(start: 2019-11-16T08:20:15Z, stop: time(v: stop_shifted)) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])

There is also a possibility to specify the default value for start and stop parameter. This is useful when you need to include data with future timestamps when no time bounds are explicitly set.

var settings = new QueryableOptimizerSettings
{
    RangeStartValue = DateTime.UtcNow.AddHours(-24),
    RangeStopValue = DateTime.UtcNow.AddHours(1)
};
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi, settings)
    select s;

TD;LR

Supported LINQ operators

Equal

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.SensorId == "id-1"
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0)
    |> filter(fn: (r) => (r["sensor_id"] == "id-1"))  
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])

Not Equal

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.SensorId != "id-1"
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0)
    |> filter(fn: (r) => (r["sensor_id"] != "id-1")) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])

Less Than

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value < 28
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] < 28))

Less Than Or Equal

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value <= 28
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] <= 28))

Greater Than

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value > 28
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] > 28))

Greater Than Or Equal

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value >= 28
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] >= 28))

And

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value >= 28 && s.SensorId != "id-1"
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> filter(fn: (r) => (r["sensor_id"] != "id-1"))
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] >= 28))

Or

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value >= 28 || s.Value <= 5
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => ((r["data"] >= 28) or (r["data"] <=> 28)))

Any

The following code demonstrates how to use the Any operator to determine whether a collection contains any elements. By default the InfluxDB.Client doesn't supports to store a subcollection in your DomainObject.

Imagine that you have following entities:

class SensorCustom
{
    public Guid Id { get; set; }
    
    public float Data { get; set; }
    
    public DateTimeOffset Time { get; set; }
    
    public virtual ICollection<SensorAttribute> Attributes { get; set; }
}

class SensorAttribute
{
    public string Name { get; set; }
    public string Value { get; set; }
}

To be able to store SensorCustom entity in InfluxDB and retrieve it from database you should implement IDomainObjectMapper. The converter tells to the Client how to map DomainObject into PointData and how to map FluxRecord to DomainObject.

Entity Converter:

private class SensorEntityConverter : IDomainObjectMapper
{
    //
    // Parse incoming FluxRecord to DomainObject
    //
    public T ConvertToEntity<T>(FluxRecord fluxRecord)
    {
        if (typeof(T) != typeof(SensorCustom))
        {
            throw new NotSupportedException($"This converter doesn't supports: {typeof(SensorCustom)}");
        }

        //
        // Create SensorCustom entity and parse `SeriesId`, `Value` and `Time`
        //
        var customEntity = new SensorCustom
        {
            Id = Guid.Parse(Convert.ToString(fluxRecord.GetValueByKey("series_id"))!),
            Data = Convert.ToDouble(fluxRecord.GetValueByKey("data")),
            Time = fluxRecord.GetTime().GetValueOrDefault().ToDateTimeUtc(),
            Attributes = new List<SensorAttribute>()
        };
        
        foreach (var (key, value) in fluxRecord.Values)
        {
            //
            // Parse SubCollection values
            //
            if (key.StartsWith("property_"))
            {
                var attribute = new SensorAttribute
                {
                    Name = key.Replace("property_", string.Empty), Value = Convert.ToString(value)
                };
                
                customEntity.Attributes.Add(attribute);
            }
        }

        return (T) Convert.ChangeType(customEntity, typeof(T));
    }

    //
    // Convert DomainObject into PointData
    //
    public PointData ConvertToPointData<T>(T entity, WritePrecision precision)
    {
        if (!(entity is SensorCustom ce))
        {
            throw new NotSupportedException($"This converter doesn't supports: {typeof(SensorCustom)}");
        }

        //
        // Map `SeriesId`, `Value` and `Time` to Tag, Field and Timestamp
        //
        var point = PointData
            .Measurement("custom_measurement")
            .Tag("series_id", ce.Id.ToString())
            .Field("data", ce.Data)
            .Timestamp(ce.Time, precision);

        //
        // Map subattributes to Fields
        //
        foreach (var attribute in ce.Attributes ?? new List<SensorAttribute>())
        {
            point = point.Field($"property_{attribute.Name}", attribute.Value);
        }

        return point;
    }
}

The Converter could be passed to QueryApiSync, QueryApi or WriteApi by:

// Create Converter
var converter = new SensorEntityConverter();

// Get Query and Write API
var queryApi = client.GetQueryApiSync(converter);
var writeApi = client.GetWriteApi(converter);

The LINQ provider needs to know how properties of DomainObject are stored in InfluxDB - their name and type (tag, field, timestamp).

If you use a IDomainObjectMapper instead of InfluxDB Attributes you should implement IMemberNameResolver:

private class SensorMemberResolver: IMemberNameResolver
{
    //
    // Tell to LINQ providers how is property of DomainObject mapped - Tag, Field, Timestamp, ... ?
    //
    public MemberType ResolveMemberType(MemberInfo memberInfo)
    {
        //
        // Mapping of subcollection
        //
        if (memberInfo.DeclaringType == typeof(SensorAttribute))
        {
            return memberInfo.Name switch
            {
                "Name" => MemberType.NamedField,
                "Value" => MemberType.NamedFieldValue,
                _ => MemberType.Field
            };
        }

        //
        // Mapping of "root" domain
        //
        return memberInfo.Name switch
        {
            "Time" => MemberType.Timestamp,
            "Id" => MemberType.Tag,
            _ => MemberType.Field
        };
    }

    //
    // Tell to LINQ provider how is property of DomainObject named 
    //
    public string GetColumnName(MemberInfo memberInfo)
    {
        return memberInfo.Name switch
        {
            "Id" => "series_id",
            "Data" => "data",
            _ => memberInfo.Name
        };
    }

    //
    // Tell to LINQ provider how is named property that is flattened
    //
    public string GetNamedFieldName(MemberInfo memberInfo, object value)
    {
        return "attribute_" + Convert.ToString(value);
    }
}

Now We are able to provide a required information to the LINQ provider by memberResolver parameter:

var memberResolver = new SensorMemberResolver();

var query = from s in InfluxDBQueryable<SensorCustom>.Queryable("my-bucket", "my-org", queryApi, memberResolver)
    where s.Attributes.Any(a => a.Name == "quality" && a.Value == "good")
    select s;

Flux Query:

from(bucket: "my-bucket")
    |> range(start: 0)
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["attribute_quality"] == "good"))

For more info see CustomDomainMappingAndLinq example.

Take

var query = (from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    select s)
    .Take(10);

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> limit(n: 10)

Note: the limit() function can be align before pivot() function by:

var optimizerSettings =
    new QueryableOptimizerSettings
    {
        AlignLimitFunctionAfterPivot = false
    };

Performance: The pivot() is a “heavy” function. Using limit() before pivot() is much faster but works only if you have consistent data series. See #318 for more details.

TakeLast

var query = (from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    select s)
    .TakeLast(10);

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> tail(n: 10)

Note: the tail() function can be align before pivot() function by:

var optimizerSettings =
    new QueryableOptimizerSettings
    {
        AlignLimitFunctionAfterPivot = false
    };

Performance: The pivot() is a “heavy” function. Using tail() before pivot() is much faster but works only if you have consistent data series. See #318 for more details.

Skip

var query = (from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    select s)
    .Take(10)
    .Skip(50);

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> limit(n: 10, offset: 50)

OrderBy

Example 1:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    orderby s.Deployment
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> sort(columns: ["deployment"], desc: false)
Example 2:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    orderby s.Timestamp descending 
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> sort(columns: ["_time"], desc: true)

Count

Possibility of partial client side evaluation

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    select s;

var sensors = query.Count();

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> stateCount(fn: (r) => true, column: "linq_result_column") 
    |> last(column: "linq_result_column") 
    |> keep(columns: ["linq_result_column"])

LongCount

Possibility of partial client side evaluation

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    select s;

var sensors = query.LongCount();

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0)
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> stateCount(fn: (r) => true, column: "linq_result_column") 
    |> last(column: "linq_result_column") 
    |> keep(columns: ["linq_result_column"])

Contains

int[] values = {15, 28};

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where values.Contains(s.Value)
    select s;

var sensors = query.Count();

Flux Query:

from(bucket: "my-bucket")
    |> range(start: 0)
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => contains(value: r["data"], set: [15, 28]))

Custom LINQ operators

AggregateWindow

The AggregateWindow applies an aggregate function to fixed windows of time. Can be used only for a field which is defined as timestamp - [Column(IsTimestamp = true)]. For more info about aggregateWindow() function see Flux's documentation - https://docs.influxdata.com/flux/v0.x/stdlib/universe/aggregatewindow/.

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp.AggregateWindow(TimeSpan.FromSeconds(20), TimeSpan.FromSeconds(40), "mean")
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> aggregateWindow(every: 20s, period: 40s, fn: mean) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])

Domain Converter

There is also possibility to use custom domain converter to transform data from/to your DomainObject.

Instead of following Influx attributes:

[Measurement("temperature")]
private class Temperature
{
    [Column("location", IsTag = true)] public string Location { get; set; }

    [Column("value")] public double Value { get; set; }

    [Column(IsTimestamp = true)] public DateTime Time { get; set; }
}

you could create own instance of IDomainObjectMapper and use it with QueryApiSync, QueryApi and WriteApi.

var converter = new DomainEntityConverter();
var queryApi = client.GetQueryApiSync(converter)

To satisfy LINQ Query Provider you have to implement IMemberNameResolver:

var resolver = new MemberNameResolver();

var query = from s in InfluxDBQueryable<SensorCustom>.Queryable("my-bucket", "my-org", queryApi, nameResolver)
    where s.Attributes.Any(a => a.Name == "quality" && a.Value == "good")
    select s;

for more details see Any operator and for full example see: CustomDomainMappingAndLinq.

How to debug output Flux Query

var query = (from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", _queryApi)
        where s.SensorId == "id-1"
        where s.Value > 12
        where s.Timestamp > new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
        where s.Timestamp < new DateTime(2021, 01, 10, 5, 10, 0, DateTimeKind.Utc)
        orderby s.Timestamp
        select s)
    .Take(2)
    .Skip(2);
    
Console.WriteLine("==== Debug LINQ Queryable Flux output ====");
var influxQuery = ((InfluxDBQueryable<Sensor>) query).ToDebugQuery();
foreach (var statement in influxQuery.Extern.Body)
{
    var os = statement as OptionStatement;
    var va = os?.Assignment as VariableAssignment;
    var name = va?.Id.Name;
    var value = va?.Init.GetType().GetProperty("Value")?.GetValue(va.Init, null);

    Console.WriteLine($"{name}={value}");
}
Console.WriteLine();
Console.WriteLine(influxQuery._Query);

How to filter by Measurement

By default, as an optimization step, Flux queries generated by LINQ will automatically drop the Start, Stop and Measurement columns:

from(bucket: "my-bucket")
  |> range(start: 0)
  |> drop(columns: ["_start", "_stop", "_measurement"])
  ...

This is because typical POCO classes do not include them:

[Measurement("temperature")]
private class Temperature
{
    [Column("location", IsTag = true)] public string Location { get; set; }
    [Column("value")] public double Value { get; set; }
    [Column(IsTimestamp = true)] public DateTime Time { get; set; }
}

It is, however, possible to utilize the Measurement column in LINQ queries by enabling it in the query optimization settings:

var optimizerSettings =
    new QueryableOptimizerSettings
    {
        DropMeasurementColumn = false,
        
        // Note we can also enable the start and stop columns
        //DropStartColumn = false,
        //DropStopColumn = false
    };

var queryable =
    new InfluxDBQueryable<InfluxPoint>("my-bucket", "my-org", queryApi, new DefaultMemberNameResolver(), optimizerSettings);

var latest =
    await queryable.Where(p => p.Measurement == "temperature")
                   .OrderByDescending(p => p.Time)
                   .ToInfluxQueryable()
                   .GetAsyncEnumerator()
                   .FirstOrDefaultAsync();

private class InfluxPoint
{
    [Column(IsMeasurement = true)] public string Measurement { get; set; }
    [Column("location", IsTag = true)] public string Location { get; set; }
    [Column("value")] public double Value { get; set; }
    [Column(IsTimestamp = true)] public DateTime Time { get; set; }
}

Asynchronous Queries

The LINQ driver also supports asynchronous querying. For asynchronous queries you have to initialize InfluxDBQueryable with asynchronous version of QueryApi and transform IQueryable<T> to IAsyncEnumerable<T>:

var client = new InfluxDBClient("http://localhost:8086", "my-token");
var queryApi = client.GetQueryApi();

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    select s;

IAsyncEnumerable<Sensor> enumerable = query
    .ToInfluxQueryable()
    .GetAsyncEnumerator();
Product Compatible and additional computed target framework versions.
.NET net5.0 was computed.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed. 
.NET Core netcoreapp2.0 was computed.  netcoreapp2.1 was computed.  netcoreapp2.2 was computed.  netcoreapp3.0 was computed.  netcoreapp3.1 was computed. 
.NET Standard netstandard2.0 is compatible.  netstandard2.1 is compatible. 
.NET Framework net461 was computed.  net462 was computed.  net463 was computed.  net47 was computed.  net471 was computed.  net472 was computed.  net48 was computed.  net481 was computed. 
MonoAndroid monoandroid was computed. 
MonoMac monomac was computed. 
MonoTouch monotouch was computed. 
Tizen tizen40 was computed.  tizen60 was computed. 
Xamarin.iOS xamarinios was computed. 
Xamarin.Mac xamarinmac was computed. 
Xamarin.TVOS xamarintvos was computed. 
Xamarin.WatchOS xamarinwatchos was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (4)

Showing the top 4 NuGet packages that depend on InfluxDB.Client.Linq:

Package Downloads
SpmisNet.Data

Package Description

DeerNet.InfluxDb2

Package Description

MicroHeart.InfluxDB

Package Description

ToolNET.InfluxDB.SDK

时序数据库InfluxDB操作SDK

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
4.19.0-dev.15190 57 12/5/2024
4.19.0-dev.15189 44 12/5/2024
4.19.0-dev.15188 40 12/5/2024
4.19.0-dev.15178 45 12/5/2024
4.19.0-dev.15177 45 12/5/2024
4.19.0-dev.14906 107 10/2/2024
4.19.0-dev.14897 54 10/2/2024
4.19.0-dev.14896 47 10/2/2024
4.19.0-dev.14895 49 10/2/2024
4.19.0-dev.14811 68 9/13/2024
4.18.0 13,567 9/13/2024
4.18.0-dev.14769 66 9/4/2024
4.18.0-dev.14743 60 9/3/2024
4.18.0-dev.14694 57 9/3/2024
4.18.0-dev.14693 54 9/3/2024
4.18.0-dev.14692 52 9/3/2024
4.18.0-dev.14618 53 9/2/2024
4.18.0-dev.14609 51 9/2/2024
4.18.0-dev.14592 53 9/2/2024
4.18.0-dev.14446 79 8/19/2024
4.18.0-dev.14414 70 8/12/2024
4.17.0 6,530 8/12/2024
4.17.0-dev.headers.read.1 83 7/22/2024
4.17.0-dev.14350 51 8/5/2024
4.17.0-dev.14333 46 8/5/2024
4.17.0-dev.14300 42 8/5/2024
4.17.0-dev.14291 42 8/5/2024
4.17.0-dev.14189 60 7/23/2024
4.17.0-dev.14179 56 7/22/2024
4.17.0-dev.14101 133 7/1/2024
4.17.0-dev.14100 65 7/1/2024
4.17.0-dev.14044 66 6/24/2024
4.16.0 6,931 6/24/2024
4.16.0-dev.13990 68 6/3/2024
4.16.0-dev.13973 59 6/3/2024
4.16.0-dev.13972 58 6/3/2024
4.16.0-dev.13963 66 6/3/2024
4.16.0-dev.13962 62 6/3/2024
4.16.0-dev.13881 64 6/3/2024
4.16.0-dev.13775 77 5/17/2024
4.16.0-dev.13702 68 5/17/2024
4.15.0 2,639 5/17/2024
4.15.0-dev.13674 76 5/14/2024
4.15.0-dev.13567 83 4/2/2024
4.15.0-dev.13558 63 4/2/2024
4.15.0-dev.13525 74 4/2/2024
4.15.0-dev.13524 64 4/2/2024
4.15.0-dev.13433 75 3/7/2024
4.15.0-dev.13432 74 3/7/2024
4.15.0-dev.13407 72 3/7/2024
4.15.0-dev.13390 68 3/7/2024
4.15.0-dev.13388 66 3/7/2024
4.15.0-dev.13282 74 3/6/2024
4.15.0-dev.13257 74 3/6/2024
4.15.0-dev.13113 235 2/1/2024
4.15.0-dev.13104 70 2/1/2024
4.15.0-dev.13081 71 2/1/2024
4.15.0-dev.13040 69 2/1/2024
4.15.0-dev.13039 72 2/1/2024
4.15.0-dev.12863 119 1/8/2024
4.15.0-dev.12846 87 1/8/2024
4.15.0-dev.12837 79 1/8/2024
4.15.0-dev.12726 160 12/1/2023
4.15.0-dev.12725 81 12/1/2023
4.15.0-dev.12724 78 12/1/2023
4.15.0-dev.12691 82 12/1/2023
4.15.0-dev.12658 77 12/1/2023
4.15.0-dev.12649 80 12/1/2023
4.15.0-dev.12624 77 12/1/2023
4.15.0-dev.12471 104 11/7/2023
4.15.0-dev.12462 78 11/7/2023
4.14.0 51,214 11/7/2023
4.14.0-dev.12437 80 11/7/2023
4.14.0-dev.12343 92 11/2/2023
4.14.0-dev.12310 79 11/2/2023
4.14.0-dev.12284 82 11/1/2023
4.14.0-dev.12235 81 11/1/2023
4.14.0-dev.12226 79 11/1/2023
4.14.0-dev.11972 215 8/8/2023
4.14.0-dev.11915 116 7/31/2023
4.14.0-dev.11879 125 7/28/2023
4.13.0 22,062 7/28/2023
4.13.0-dev.11854 97 7/28/2023
4.13.0-dev.11814 109 7/21/2023
4.13.0-dev.11771 100 7/19/2023
4.13.0-dev.11770 108 7/19/2023
4.13.0-dev.11728 96 7/18/2023
4.13.0-dev.11686 97 7/17/2023
4.13.0-dev.11685 93 7/17/2023
4.13.0-dev.11676 111 7/17/2023
4.13.0-dev.11479 96 6/27/2023
4.13.0-dev.11478 98 6/27/2023
4.13.0-dev.11477 102 6/27/2023
4.13.0-dev.11396 103 6/19/2023
4.13.0-dev.11395 88 6/19/2023
4.13.0-dev.11342 99 6/15/2023
4.13.0-dev.11330 108 6/12/2023
4.13.0-dev.11305 101 6/12/2023
4.13.0-dev.11296 101 6/12/2023
4.13.0-dev.11217 104 6/6/2023
4.13.0-dev.11089 94 5/30/2023
4.13.0-dev.11064 101 5/30/2023
4.13.0-dev.10998 98 5/29/2023
4.13.0-dev.10989 101 5/29/2023
4.13.0-dev.10871 104 5/8/2023
4.13.0-dev.10870 86 5/8/2023
4.13.0-dev.10819 114 4/28/2023
4.12.0 13,375 4/28/2023
4.12.0-dev.10777 105 4/27/2023
4.12.0-dev.10768 110 4/27/2023
4.12.0-dev.10759 106 4/27/2023
4.12.0-dev.10742 102 4/27/2023
4.12.0-dev.10685 95 4/27/2023
4.12.0-dev.10684 96 4/27/2023
4.12.0-dev.10643 98 4/27/2023
4.12.0-dev.10642 102 4/27/2023
4.12.0-dev.10569 98 4/27/2023
4.12.0-dev.10193 140 2/23/2023
4.11.0 20,394 2/23/2023
4.11.0-dev.10176 109 2/23/2023
4.11.0-dev.10059 214 1/26/2023
4.10.0 6,423 1/26/2023
4.10.0-dev.10033 129 1/25/2023
4.10.0-dev.10032 129 1/25/2023
4.10.0-dev.10031 126 1/25/2023
4.10.0-dev.9936 2,203 12/26/2022
4.10.0-dev.9935 123 12/26/2022
4.10.0-dev.9881 119 12/21/2022
4.10.0-dev.9880 114 12/21/2022
4.10.0-dev.9818 123 12/16/2022
4.10.0-dev.9773 113 12/12/2022
4.10.0-dev.9756 120 12/12/2022
4.10.0-dev.9693 115 12/6/2022
4.9.0 9,549 12/6/2022
4.9.0-dev.9684 117 12/6/2022
4.9.0-dev.9666 124 12/6/2022
4.9.0-dev.9617 117 12/6/2022
4.9.0-dev.9478 112 12/5/2022
4.9.0-dev.9469 127 12/5/2022
4.9.0-dev.9444 109 12/5/2022
4.9.0-dev.9411 104 12/5/2022
4.9.0-dev.9350 114 12/1/2022
4.8.0 1,598 12/1/2022
4.8.0-dev.9324 116 11/30/2022
4.8.0-dev.9232 120 11/28/2022
4.8.0-dev.9223 116 11/28/2022
4.8.0-dev.9222 124 11/28/2022
4.8.0-dev.9117 129 11/21/2022
4.8.0-dev.9108 114 11/21/2022
4.8.0-dev.9099 126 11/21/2022
4.8.0-dev.9029 116 11/16/2022
4.8.0-dev.8971 120 11/15/2022
4.8.0-dev.8961 126 11/14/2022
4.8.0-dev.8928 124 11/14/2022
4.8.0-dev.8899 130 11/14/2022
4.8.0-dev.8898 122 11/14/2022
4.8.0-dev.8839 136 11/14/2022
4.8.0-dev.8740 112 11/7/2022
4.8.0-dev.8725 117 11/7/2022
4.8.0-dev.8648 116 11/3/2022
4.7.0 24,226 11/3/2022
4.7.0-dev.8625 124 11/2/2022
4.7.0-dev.8594 126 10/31/2022
4.7.0-dev.8579 125 10/31/2022
4.7.0-dev.8557 116 10/31/2022
4.7.0-dev.8540 108 10/31/2022
4.7.0-dev.8518 112 10/31/2022
4.7.0-dev.8517 121 10/31/2022
4.7.0-dev.8509 119 10/31/2022
4.7.0-dev.8377 123 10/26/2022
4.7.0-dev.8360 130 10/25/2022
4.7.0-dev.8350 129 10/24/2022
4.7.0-dev.8335 126 10/24/2022
4.7.0-dev.8334 127 10/24/2022
4.7.0-dev.8223 167 10/19/2022
4.7.0-dev.8178 121 10/17/2022
4.7.0-dev.8170 119 10/17/2022
4.7.0-dev.8148 128 10/17/2022
4.7.0-dev.8133 125 10/17/2022
4.7.0-dev.8097 115 10/17/2022
4.7.0-dev.8034 131 10/11/2022
4.7.0-dev.8025 119 10/11/2022
4.7.0-dev.8009 137 10/10/2022
4.7.0-dev.8001 142 10/10/2022
4.7.0-dev.7959 119 10/4/2022
4.7.0-dev.7905 124 9/30/2022
4.7.0-dev.7875 115 9/29/2022
4.6.0 2,703 9/29/2022
4.6.0-dev.7832 129 9/29/2022
4.6.0-dev.7817 128 9/29/2022
4.6.0-dev.7779 143 9/27/2022
4.6.0-dev.7778 139 9/27/2022
4.6.0-dev.7734 130 9/26/2022
4.6.0-dev.7733 130 9/26/2022
4.6.0-dev.7677 133 9/20/2022
4.6.0-dev.7650 137 9/16/2022
4.6.0-dev.7626 191 9/14/2022
4.6.0-dev.7618 182 9/14/2022
4.6.0-dev.7574 123 9/13/2022
4.6.0-dev.7572 122 9/13/2022
4.6.0-dev.7528 118 9/12/2022
4.6.0-dev.7502 129 9/9/2022
4.6.0-dev.7479 146 9/8/2022
4.6.0-dev.7471 133 9/8/2022
4.6.0-dev.7447 125 9/7/2022
4.6.0-dev.7425 120 9/7/2022
4.6.0-dev.7395 118 9/6/2022
4.6.0-dev.7344 123 8/31/2022
4.6.0-dev.7329 117 8/31/2022
4.6.0-dev.7292 109 8/30/2022
4.6.0-dev.7240 125 8/29/2022
4.5.0 2,507 8/29/2022
4.5.0-dev.7216 121 8/27/2022
4.5.0-dev.7147 127 8/22/2022
4.5.0-dev.7134 126 8/17/2022
4.5.0-dev.7096 133 8/15/2022
4.5.0-dev.7070 137 8/11/2022
4.5.0-dev.7040 157 8/10/2022
4.5.0-dev.7011 135 8/3/2022
4.5.0-dev.6987 138 8/1/2022
4.5.0-dev.6962 141 7/29/2022
4.4.0 14,733 7/29/2022
4.4.0-dev.6901 141 7/25/2022
4.4.0-dev.6843 133 7/19/2022
4.4.0-dev.6804 137 7/19/2022
4.4.0-dev.6789 135 7/19/2022
4.4.0-dev.6760 133 7/19/2022
4.4.0-dev.6705 145 7/14/2022
4.4.0-dev.6663 171 6/24/2022
4.4.0-dev.6655 131 6/24/2022
4.3.0 11,548 6/24/2022
4.3.0-dev.multiple.buckets3 161 6/21/2022
4.3.0-dev.multiple.buckets2 125 6/17/2022
4.3.0-dev.multiple.buckets1 132 6/17/2022
4.3.0-dev.6631 126 6/22/2022
4.3.0-dev.6623 134 6/22/2022
4.3.0-dev.6374 137 6/13/2022
4.3.0-dev.6286 139 5/20/2022
4.2.0 2,413 5/20/2022
4.2.0-dev.6257 141 5/13/2022
4.2.0-dev.6248 138 5/12/2022
4.2.0-dev.6233 143 5/12/2022
4.2.0-dev.6194 140 5/10/2022
4.2.0-dev.6193 134 5/10/2022
4.2.0-dev.6158 2,849 5/6/2022
4.2.0-dev.6135 145 5/6/2022
4.2.0-dev.6091 146 4/28/2022
4.2.0-dev.6048 146 4/28/2022
4.2.0-dev.6047 146 4/28/2022
4.2.0-dev.5966 148 4/25/2022
4.2.0-dev.5938 149 4/19/2022
4.1.0 3,400 4/19/2022
4.1.0-dev.5910 342 4/13/2022
4.1.0-dev.5888 148 4/13/2022
4.1.0-dev.5887 154 4/13/2022
4.1.0-dev.5794 154 4/6/2022
4.1.0-dev.5725 156 3/18/2022
4.0.0 7,896 3/18/2022
4.0.0-rc3 399 3/4/2022
4.0.0-rc2 549 2/25/2022
4.0.0-rc1 210 2/18/2022
4.0.0-dev.5709 148 3/18/2022
4.0.0-dev.5684 158 3/15/2022
4.0.0-dev.5630 158 3/4/2022
4.0.0-dev.5607 150 3/3/2022
4.0.0-dev.5579 155 2/25/2022
4.0.0-dev.5556 158 2/24/2022
4.0.0-dev.5555 146 2/24/2022
4.0.0-dev.5497 144 2/23/2022
4.0.0-dev.5489 155 2/23/2022
4.0.0-dev.5460 151 2/23/2022
4.0.0-dev.5444 145 2/22/2022
4.0.0-dev.5333 150 2/17/2022
4.0.0-dev.5303 145 2/16/2022
4.0.0-dev.5280 157 2/16/2022
4.0.0-dev.5279 158 2/16/2022
4.0.0-dev.5241 252 2/15/2022
4.0.0-dev.5225 148 2/15/2022
4.0.0-dev.5217 153 2/15/2022
4.0.0-dev.5209 144 2/15/2022
4.0.0-dev.5200 148 2/14/2022
4.0.0-dev.5188 148 2/10/2022
4.0.0-dev.5180 147 2/10/2022
4.0.0-dev.5172 150 2/10/2022
4.0.0-dev.5130 144 2/10/2022
4.0.0-dev.5122 150 2/9/2022
4.0.0-dev.5103 157 2/9/2022
4.0.0-dev.5097 156 2/9/2022
4.0.0-dev.5091 151 2/9/2022
4.0.0-dev.5084 151 2/8/2022
3.4.0-dev.5263 159 2/15/2022
3.4.0-dev.4986 151 2/7/2022
3.4.0-dev.4968 167 2/4/2022
3.3.0 8,680 2/4/2022
3.3.0-dev.4889 156 2/3/2022
3.3.0-dev.4865 162 2/1/2022
3.3.0-dev.4823 165 1/19/2022
3.3.0-dev.4691 163 1/7/2022
3.3.0-dev.4557 1,373 11/26/2021
3.2.0 5,901 11/26/2021
3.2.0-dev.4533 4,868 11/24/2021
3.2.0-dev.4484 230 11/11/2021
3.2.0-dev.4475 202 11/10/2021
3.2.0-dev.4387 178 10/26/2021
3.2.0-dev.4363 193 10/22/2021
3.2.0-dev.4356 191 10/22/2021
3.1.0 1,795 10/22/2021
3.1.0-dev.4303 195 10/18/2021
3.1.0-dev.4293 197 10/15/2021
3.1.0-dev.4286 174 10/15/2021
3.1.0-dev.4240 213 10/12/2021
3.1.0-dev.4202 170 10/11/2021
3.1.0-dev.4183 213 10/11/2021
3.1.0-dev.4131 182 10/8/2021
3.1.0-dev.3999 189 10/5/2021
3.1.0-dev.3841 267 9/29/2021
3.1.0-dev.3798 188 9/17/2021
3.0.0 1,208 9/17/2021
3.0.0-dev.3726 530 8/31/2021
3.0.0-dev.3719 175 8/31/2021
3.0.0-dev.3671 189 8/20/2021
2.2.0-dev.3652 183 8/20/2021
2.1.0 1,562 8/20/2021
2.1.0-dev.3605 188 8/17/2021
2.1.0-dev.3584 189 8/16/2021
2.1.0-dev.3558 179 8/16/2021
2.1.0-dev.3527 226 7/29/2021
2.1.0-dev.3519 227 7/29/2021
2.1.0-dev.3490 178 7/20/2021
2.1.0-dev.3445 201 7/12/2021
2.1.0-dev.3434 236 7/9/2021
2.0.0 9,022 7/9/2021
2.0.0-dev.3401 217 6/25/2021
2.0.0-dev.3368 202 6/23/2021
2.0.0-dev.3361 213 6/23/2021
2.0.0-dev.3330 209 6/17/2021
2.0.0-dev.3291 212 6/16/2021
1.20.0-dev.3218 229 6/4/2021
1.19.0 934 6/4/2021
1.19.0-dev.3204 199 6/3/2021
1.19.0-dev.3160 183 6/2/2021
1.19.0-dev.3159 179 6/2/2021
1.19.0-dev.3084 840 5/7/2021
1.19.0-dev.3051 204 5/5/2021
1.19.0-dev.3044 201 5/5/2021
1.19.0-dev.3008 195 4/30/2021
1.18.0 1,243 4/30/2021
1.18.0-dev.2973 214 4/27/2021
1.18.0-dev.2930 194 4/16/2021
1.18.0-dev.2919 191 4/13/2021
1.18.0-dev.2893 177 4/12/2021
1.18.0-dev.2880 196 4/12/2021
1.18.0-dev.2856 190 4/7/2021
1.18.0-dev.2830 286 4/1/2021
1.18.0-dev.2816 192 4/1/2021
1.17.0 771 4/1/2021
1.17.0-dev.linq.17 805 3/18/2021
1.17.0-dev.linq.16 184 3/16/2021
1.17.0-dev.linq.15 218 3/15/2021
1.17.0-dev.linq.14 222 3/12/2021
1.17.0-dev.linq.13 251 3/11/2021
1.17.0-dev.linq.12 202 3/10/2021
1.17.0-dev.linq.11 197 3/8/2021
1.17.0-dev.2776 221 3/26/2021
1.17.0-dev.2713 234 3/25/2021
1.16.0-dev.linq.10 1,239 2/4/2021
1.15.0-dev.linq.9 218 2/4/2021
1.15.0-dev.linq.8 191 1/28/2021
1.15.0-dev.linq.7 208 1/27/2021
1.15.0-dev.linq.6 225 1/20/2021
1.15.0-dev.linq.5 244 1/19/2021
1.15.0-dev.linq.4 207 1/15/2021
1.15.0-dev.linq.3 183 1/14/2021
1.15.0-dev.linq.2 199 1/13/2021
1.15.0-dev.linq.1 223 1/12/2021