DiffSharp.Backends.Reference 1.0.7-preview1838869913

This is a prerelease version of DiffSharp.Backends.Reference.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Reference --version 1.0.7-preview1838869913                
NuGet\Install-Package DiffSharp.Backends.Reference -Version 1.0.7-preview1838869913                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Reference" Version="1.0.7-preview1838869913" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add DiffSharp.Backends.Reference --version 1.0.7-preview1838869913                
#r "nuget: DiffSharp.Backends.Reference, 1.0.7-preview1838869913"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install DiffSharp.Backends.Reference as a Cake Addin
#addin nuget:?package=DiffSharp.Backends.Reference&version=1.0.7-preview1838869913&prerelease

// Install DiffSharp.Backends.Reference as a Cake Tool
#tool nuget:?package=DiffSharp.Backends.Reference&version=1.0.7-preview1838869913&prerelease                

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

Product Compatible and additional computed target framework versions.
.NET net5.0 was computed.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed. 
.NET Core netcoreapp3.0 was computed.  netcoreapp3.1 was computed. 
.NET Standard netstandard2.1 is compatible. 
MonoAndroid monoandroid was computed. 
MonoMac monomac was computed. 
MonoTouch monotouch was computed. 
Tizen tizen60 was computed. 
Xamarin.iOS xamarinios was computed. 
Xamarin.Mac xamarinmac was computed. 
Xamarin.TVOS xamarintvos was computed. 
Xamarin.WatchOS xamarinwatchos was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (4)

Showing the top 4 NuGet packages that depend on DiffSharp.Backends.Reference:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
1.0.7 5,905 3/26/2022
1.0.7-preview2044360861 379 3/26/2022
1.0.7-preview1873603133 462 2/21/2022
1.0.7-preview1872895008 403 2/20/2022
1.0.7-preview1872194677 403 2/20/2022
1.0.7-preview1867437105 376 2/19/2022
1.0.7-preview1838897476 424 2/14/2022
1.0.7-preview1838869913 410 2/14/2022
1.0.6 6,587 2/9/2022
1.0.6-preview1838805210 434 2/14/2022
1.0.6-preview1838790927 463 2/14/2022
1.0.6-preview1838781533 457 2/14/2022
1.0.6-preview1838761310 385 2/14/2022
1.0.6-preview1838574327 487 2/14/2022
1.0.6-preview1838238393 429 2/13/2022
1.0.6-preview1837967313 425 2/13/2022
1.0.6-preview1837932839 278 2/13/2022
1.0.6-preview1837857091 295 2/13/2022
1.0.5 3,570 2/9/2022
1.0.4 3,781 2/8/2022
1.0.3 4,861 2/8/2022
1.0.2 3,967 2/8/2022
1.0.1 4,822 11/8/2021
1.0.0-preview-987646120 590 6/30/2021
1.0.0-preview-964642900 558 6/23/2021
1.0.0-preview-964597118 423 6/23/2021
1.0.0-preview-964532207 483 6/23/2021
1.0.0-preview-964414624 467 6/23/2021
1.0.0-preview-962665709 317 6/23/2021
1.0.0-preview-961120541 370 6/22/2021
1.0.0-preview-958984202 435 6/22/2021
1.0.0-preview-783523654 537 4/25/2021
1.0.0-preview-783503343 492 4/25/2021
1.0.0-preview-783410550 473 4/25/2021
1.0.0-preview-781810429 398 4/25/2021
1.0.0-preview-775752139 491 4/22/2021
1.0.0-preview-774228953 454 4/22/2021
1.0.0-preview-769092916 512 4/21/2021
1.0.0-preview-768013090 444 4/20/2021
1.0.0-preview-762002995 422 4/19/2021
1.0.0-preview-761040762 492 4/18/2021
1.0.0-preview-761018834 480 4/18/2021
1.0.0-preview-756065403 402 4/16/2021
1.0.0-preview-755638011 453 4/16/2021
1.0.0-preview-752421465 452 4/15/2021
1.0.0-preview-748176085 456 4/14/2021
1.0.0-preview-746203897 414 4/13/2021
1.0.0-preview-746138300 456 4/13/2021
1.0.0-preview-745205599 427 4/13/2021
1.0.0-preview-739671157 458 4/12/2021
1.0.0-preview-712483117 486 4/2/2021
1.0.0-preview-699281085 406 3/29/2021
1.0.0-preview-699125312 438 3/29/2021
1.0.0-preview-698458610 493 3/29/2021
1.0.0-preview-697743517 513 3/29/2021
1.0.0-preview-697665469 475 3/29/2021
1.0.0-preview-690194555 474 3/26/2021
1.0.0-preview-688124591 448 3/25/2021
1.0.0-preview-687886352 401 3/25/2021
1.0.0-preview-681551353 443 3/24/2021
1.0.0-preview-681104545 454 3/23/2021
1.0.0-preview-680643606 491 3/23/2021
1.0.0-preview-679950457 462 3/23/2021
1.0.0-preview-669022451 293 3/19/2021
1.0.0-preview-643151273 291 3/11/2021
1.0.0-preview-633398743 286 3/8/2021
1.0.0-preview-633348953 326 3/8/2021
1.0.0-preview-621803110 317 3/4/2021
1.0.0-preview-611561611 285 3/1/2021
1.0.0-preview-611172961 285 3/1/2021
1.0.0-preview-593196134 273 2/23/2021
1.0.0-preview-589424126 282 2/22/2021
1.0.0-preview-589402583 264 2/22/2021
1.0.0-preview-586837684 301 2/21/2021
1.0.0-preview-586440747 295 2/21/2021
1.0.0-preview-498549439 328 1/20/2021
1.0.0-preview-485581354 312 1/14/2021
1.0.0-preview-392545720 374 11/30/2020
1.0.0-preview-392233243 371 11/30/2020
1.0.0-preview-392187079 397 11/30/2020
1.0.0-preview-390203270 374 11/29/2020
1.0.0-preview-387146713 351 11/27/2020
1.0.0-preview-386097798 391 11/26/2020
1.0.0-preview-385867359 378 11/26/2020
1.0.0-preview-385523380 320 11/26/2020
1.0.0-preview-384128234 410 11/25/2020
1.0.0-preview-374537774 329 11/20/2020
1.0.0-preview-374468367 341 11/20/2020
1.0.0-preview-368681212 391 11/17/2020
1.0.0-preview-368659044 388 11/17/2020
1.0.0-preview-364746088 433 11/15/2020
1.0.0-preview-364706087 420 11/15/2020
1.0.0-preview-363372268 344 11/14/2020
1.0.0-preview-362038354 370 11/13/2020
1.0.0-preview-362004577 344 11/13/2020
1.0.0-preview-361488593 339 11/13/2020
1.0.0-preview-360710530 342 11/13/2020
1.0.0-preview-359756455 354 11/12/2020
1.0.0-preview-358333968 381 11/11/2020
1.0.0-preview-358184921 379 11/11/2020
1.0.0-preview-358174946 406 11/11/2020
1.0.0-preview-349704450 468 11/6/2020
1.0.0-preview-349564717 402 11/6/2020
1.0.0-preview-343634015 414 11/3/2020
1.0.0-preview-343610434 404 11/3/2020
1.0.0-preview-328097867 607 10/26/2020
1.0.0-preview-322875134 413 10/22/2020
1.0.0-preview-315311536 404 10/19/2020
1.0.0-preview-309180753 398 10/15/2020
1.0.0-preview-309013019 420 10/15/2020
1.0.0-preview-308920132 363 10/15/2020
1.0.0-preview-308837132 397 10/15/2020
1.0.0-preview-308751690 384 10/15/2020
1.0.0-preview-308593840 389 10/15/2020
1.0.0-preview-299173506 463 10/10/2020
1.0.0-preview-292259854 468 10/6/2020
1.0.0-preview-291985511 416 10/6/2020
1.0.0-preview-291903007 388 10/6/2020
1.0.0-preview-291722399 409 10/6/2020
1.0.0-preview-284981464 394 10/2/2020
1.0.0-preview-284595614 342 10/2/2020
1.0.0-preview-280886714 437 9/30/2020
1.0.0-preview-278989673 378 9/29/2020
1.0.0-preview-277686264 394 9/29/2020
1.0.0-preview-277653295 423 9/29/2020
1.0.0-preview-275730148 442 9/28/2020
1.0.0-preview-275727262 408 9/28/2020
1.0.0-preview-267667710 446 9/22/2020
1.0.0-preview-263264614 504 9/20/2020
1.0.0-preview-263250971 514 9/20/2020
1.0.0-preview-262623253 390 9/19/2020
1.0.0-preview-258339834 440 9/16/2020
1.0.0-preview-258210544 466 9/16/2020
1.0.0-preview-258177528 455 9/16/2020
1.0.0-preview-258119380 453 9/16/2020
1.0.0-preview-256594931 424 9/16/2020
1.0.0-preview-256435175 504 9/15/2020
1.0.0-preview-253816091 395 9/14/2020
1.0.0-preview-253197654 403 9/14/2020
1.0.0-preview-247523274 430 9/10/2020
1.0.0-preview-247118168 399 9/9/2020
1.0.0-preview-246444372 503 9/9/2020
1.0.0-preview-246434361 484 9/9/2020
1.0.0-preview-246402060 382 9/9/2020
1.0.0-preview-245105781 389 9/8/2020
1.0.0-preview-244918410 438 9/8/2020
1.0.0-preview-243478925 377 9/7/2020
1.0.0-preview-243471084 358 9/7/2020
1.0.0-preview-243323135 483 9/7/2020
1.0.0-preview-1413494063 465 11/2/2021
1.0.0-preview-1405354284 436 10/31/2021
1.0.0-preview-1338129467 463 10/13/2021
1.0.0-preview-1327345305 560 10/11/2021
1.0.0-preview-1325686991 437 10/10/2021
1.0.0-preview-1324682939 576 10/10/2021
1.0.0-preview-1239345497 517 9/15/2021
1.0.0-preview-1227879651 500 9/13/2021
1.0.0-preview-1227810778 497 9/13/2021
1.0.0-preview-1222163389 463 9/10/2021
1.0.0-preview-1177844564 484 8/28/2021
1.0.0-preview-1176119659 406 8/28/2021
1.0.0-preview-1176116073 450 8/28/2021
1.0.0-preview-1176112166 423 8/28/2021
1.0.0-preview-1172193368 402 8/26/2021
1.0.0-preview-1168287221 404 8/25/2021
1.0.0-preview-1147185155 496 8/19/2021
1.0.0-preview-1133286135 496 8/15/2021
1.0.0-preview-1118120224 510 8/10/2021
1.0.0-preview-1111420036 408 8/9/2021
1.0.0-preview-1111385512 399 8/9/2021
1.0.0-preview-1111166736 430 8/9/2021
1.0.0-preview-1088380884 455 8/1/2021
1.0.0-preview-1088311063 446 8/1/2021
1.0.0-preview-1088021240 554 8/1/2021
1.0.0-preview-1083990424 463 7/31/2021
1.0.0-preview-1080710191 449 7/30/2021
1.0.0-preview-1080701269 469 7/30/2021
1.0.0-preview-1079028054 504 7/29/2021
1.0.0-preview-1079000079 475 7/29/2021
1.0.0-preview-1078977564 526 7/29/2021
1.0.0-preview-1069218438 388 7/26/2021
1.0.0-preview-1065692127 512 7/26/2021
1.0.0-preview-1054554829 460 7/22/2021
1.0.0-preview-1054460177 457 7/22/2021
1.0.0-preview-1044919966 399 7/19/2021
1.0.0-preview-1043697034 382 7/19/2021
1.0.0-preview-1001211231 441 7/5/2021
1.0.0-preview-1001204475 440 7/5/2021
0.9.5-preview-243240046 453 9/7/2020
0.9.5-preview-243219862 443 9/7/2020