Tensor 0.4.11

.NET Standard 2.0
dotnet add package Tensor --version 0.4.11
NuGet\Install-Package Tensor -Version 0.4.11
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="Tensor" Version="0.4.11" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add Tensor --version 0.4.11
#r "nuget: Tensor, 0.4.11"
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install Tensor as a Cake Addin
#addin nuget:?package=Tensor&version=0.4.11

// Install Tensor as a Cake Tool
#tool nuget:?package=Tensor&version=0.4.11

Tensor (n-dimensional array) library for F#

     Core features:
       - n-dimensional arrays (tensors) in host memory or on CUDA GPUs
       - element-wise operations (addition, multiplication, absolute value, etc.)
       - basic linear algebra operations (dot product, SVD decomposition, matrix inverse, etc.)
       - reduction operations (sum, product, average, maximum, arg max, etc.)
       - logic operations (comparision, and, or, etc.)
       - views, slicing, reshaping, broadcasting (similar to NumPy)
       - scatter and gather by indices
       - standard functional operations (map, fold, etc.)

     Data exchange:
       - read/write support for HDF5 (.h5)
       - interop with standard F# types (Seq, List, Array, Array2D, Array3D, etc.)

     Performance:
       - host: SIMD and BLAS accelerated operations
         - by default Intel MKL is used (shipped with NuGet package)
         - other BLASes (OpenBLAS, vendor-specific) can be selected by configuration option
       - CUDA GPU: all operations performed locally on GPU and cuBLAS used for matrix operations

     Requirements:
       - Linux, MacOS or Windows on x64
       - Linux requires libgomp.so.1 installed.

     Additional algorithms are provided in the Tensor.Algorithm package.

Product Versions
.NET net5.0 net5.0-windows net6.0 net6.0-android net6.0-ios net6.0-maccatalyst net6.0-macos net6.0-tvos net6.0-windows net7.0 net7.0-android net7.0-ios net7.0-maccatalyst net7.0-macos net7.0-tvos net7.0-windows
.NET Core netcoreapp2.0 netcoreapp2.1 netcoreapp2.2 netcoreapp3.0 netcoreapp3.1
.NET Standard netstandard2.0 netstandard2.1
.NET Framework net461 net462 net463 net47 net471 net472 net48 net481
MonoAndroid monoandroid
MonoMac monomac
MonoTouch monotouch
Tizen tizen40 tizen60
Xamarin.iOS xamarinios
Xamarin.Mac xamarinmac
Xamarin.TVOS xamarintvos
Xamarin.WatchOS xamarinwatchos
Compatible target framework(s)
Additional computed target framework(s)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (3)

Showing the top 3 NuGet packages that depend on Tensor:

Package Downloads
DeepNet

Deep learning library for F#. Provides symbolic model differentiation, automatic differentiation and compilation to CUDA GPUs. Includes optimizers and model blocks used in deep learning. Make sure to set the platform of your project to x64.

RPlotTools

Tools for plotting using R from F#.

Tensor.Algorithm

Data types: - arbitrary precision rational numbers Matrix algebra (integer, rational): - Row echelon form - Smith normal form - Kernel, cokernel and (pseudo-)inverse Matrix decomposition (floating point): - Principal component analysis (PCA) - ZCA whitening Misc: - Bezout's identity - Loading of NumPy's .npy and .npz files.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
0.4.11 5,434 5/8/2018
0.4.11-v0.4.11-215 564 5/8/2018
0.4.11-symtensor-core-242 655 11/15/2018
0.4.11-symtensor-core-241 610 11/15/2018
0.4.11-symtensor-core-240 616 11/15/2018
0.4.11-symtensor-core-239 607 11/15/2018
0.4.11-symtensor-core-238 615 11/15/2018
0.4.11-symtensor-core-237 642 11/15/2018
0.4.11-symtensor-core-236 586 11/14/2018
0.4.11-symtensor-core-235 603 11/14/2018
0.4.11-symtensor-core-234 604 11/14/2018
0.4.11-symtensor-core-231 615 11/9/2018
0.4.11-symtensor-core-230 631 11/9/2018
0.4.11-symtensor-core-229 588 11/8/2018
0.4.11-symtensor-core-228 597 11/8/2018
0.4.11-symtensor-core-227 644 10/30/2018
0.4.11-symtensor-core-226 650 10/30/2018
0.4.11-symtensor-core-225 581 10/30/2018
0.4.11-develop-216 812 5/8/2018
0.4.10-develop-213 812 5/8/2018
0.4.10-develop-212 803 5/7/2018
0.4.10-develop-211 824 5/7/2018
0.3.0.712-master 678 9/1/2017
0.3.0.711-master 680 9/1/2017
0.3.0.710-master 662 9/1/2017
0.3.0.709-master 646 8/31/2017
0.3.0.708-master 670 8/30/2017
0.3.0.707-master 688 8/30/2017
0.3.0.706-master 664 8/30/2017
0.3.0.701-master 703 6/26/2017
0.3.0.700-master 717 6/22/2017
0.3.0.699-master 699 6/22/2017
0.3.0.698-master 691 6/21/2017
0.3.0.697-master 690 6/21/2017
0.3.0.696-master 726 6/21/2017
0.3.0.695-master 697 6/21/2017
0.3.0.694-master 689 6/21/2017
0.3.0.693-master 698 6/20/2017
0.3.0.692-master 681 6/19/2017
0.3.0.691-master 721 6/19/2017
0.3.0.690-master 704 6/19/2017
0.3.0.689-master 696 5/14/2017
0.3.0.688 6,535 5/14/2017
0.3.0.686-master 698 5/14/2017
0.2.0.591-master 697 4/19/2017
0.2.0.565-master 711 4/11/2017
0.2.0.556-master 693 3/21/2017
0.2.0.551-master 747 3/17/2017
0.2.0.540-master 687 3/15/2017
0.2.0.536-master 681 3/14/2017
0.2.0.519-master 706 3/2/2017
0.2.0.516-master 683 3/2/2017
0.2.0.499-master 712 2/13/2017
0.2.0.494-master 685 2/7/2017
0.2.0.479-master 704 2/1/2017
0.2.0.463-master 698 1/17/2017
0.2.0.431-master 784 12/2/2016
0.2.0.422-master 1,076 11/9/2016
0.2.0.421-master 1,011 11/9/2016
0.2.0.411-master 754 10/26/2016
0.2.0.400-master 708 10/26/2016
0.2.0.394-master 728 10/25/2016
0.2.0.382-master 719 10/21/2016
0.2.0.377-master 706 10/20/2016
0.2.0.323-master 695 10/11/2016
0.2.0.262-master 729 9/29/2016
0.2.0.248-master 723 9/27/2016
0.2.0.174-master 731 9/16/2016
0.2.0.128-master 731 9/8/2016
0.2.0.122-master 736 9/8/2016
0.2.0.121-master 710 9/7/2016
0.2.0.111-master 704 9/7/2016
0.2.0.105-ci 768 9/5/2016
0.2.0.97-ci 758 8/30/2016
0.2.0.96-ci 737 8/29/2016
0.2.0.90-ci 725 8/25/2016
0.2.0.89-ci 710 8/24/2016
0.2.0.88-ci 719 8/24/2016
0.2.0.87-ci 727 8/24/2016
0.2.0.86-ci 718 8/23/2016
0.2.0.85-ci 731 8/22/2016
0.2.0.84-ci 743 8/22/2016
0.2.0.83-ci 744 8/22/2016
0.2.0.82 1,804 8/22/2016
0.2.0.81-ci 749 8/19/2016
0.2.0.80-ci 749 6/27/2016
0.2.0.79-ci 741 6/27/2016
0.2.0.77-ci 742 6/22/2016
0.2.0.76-ci 751 6/22/2016
0.2.0.75 1,297 6/15/2016
0.2.0.74-ci 1,095 6/15/2016
0.2.0.73 1,520 6/15/2016
0.2.0.72 1,529 6/15/2016
0.2.0.71 1,484 6/14/2016
0.2.0.70 1,379 6/9/2016
0.2.0.69 1,348 6/9/2016
0.2.0.68 1,162 6/9/2016
0.2.0.67 1,655 6/8/2016
0.2.0.66-ci 741 6/8/2016
0.2.0.65-ci 746 6/8/2016
0.2.0.64-ci 792 6/8/2016
0.2.0.63-ci 723 6/7/2016
0.2.0.62 1,182 6/7/2016
0.2.0.61 1,149 6/6/2016
0.2.0.60 1,139 6/6/2016
0.2.0.59 1,132 6/6/2016
0.2.0.57 1,169 6/3/2016
0.2.0.56 1,137 6/3/2016
0.2.0.55 1,223 6/3/2016
0.2.0.54 1,174 6/3/2016
0.2.0.53 1,511 6/3/2016
0.2.0.52-ci 720 6/2/2016
0.2.0.51-ci 747 6/2/2016
0.2.0.50-ci 752 6/2/2016
0.2.0.49 1,525 5/31/2016
0.2.0.48-ci 788 5/31/2016
0.2.0.46-ci 761 5/31/2016
0.2.0.45 1,341 5/31/2016
0.2.0.44 1,341 5/31/2016
0.2.0.43 1,339 5/31/2016
0.2.0.42 1,348 5/30/2016
0.2.0.41 1,347 5/30/2016
0.2.0.40 1,376 5/30/2016
0.2.0.39 1,358 5/30/2016
0.2.0.38 1,360 5/30/2016
0.2.0.37 1,297 5/30/2016
0.2.0.36 1,317 5/25/2016
0.2.0.35 1,343 5/24/2016
0.2.0.34 1,373 5/24/2016
0.2.0.33 2,165 5/24/2016
0.2.0.32-ci 752 5/24/2016
0.1.26-ci 774 5/24/2016
0.1.24-ci 764 5/24/2016
0.1.19-ci 744 5/24/2016