Tensor 0.4.11

.NET Standard 2.0
NuGet\Install-Package Tensor -Version 0.4.11
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
dotnet add package Tensor --version 0.4.11
<PackageReference Include="Tensor" Version="0.4.11" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add Tensor --version 0.4.11
#r "nuget: Tensor, 0.4.11"
#r directive can be used in F# Interactive, C# scripting and .NET Interactive. Copy this into the interactive tool or source code of the script to reference the package.
// Install Tensor as a Cake Addin
#addin nuget:?package=Tensor&version=0.4.11

// Install Tensor as a Cake Tool
#tool nuget:?package=Tensor&version=0.4.11

Tensor (n-dimensional array) library for F#

     Core features:
       - n-dimensional arrays (tensors) in host memory or on CUDA GPUs
       - element-wise operations (addition, multiplication, absolute value, etc.)
       - basic linear algebra operations (dot product, SVD decomposition, matrix inverse, etc.)
       - reduction operations (sum, product, average, maximum, arg max, etc.)
       - logic operations (comparision, and, or, etc.)
       - views, slicing, reshaping, broadcasting (similar to NumPy)
       - scatter and gather by indices
       - standard functional operations (map, fold, etc.)

     Data exchange:
       - read/write support for HDF5 (.h5)
       - interop with standard F# types (Seq, List, Array, Array2D, Array3D, etc.)

     Performance:
       - host: SIMD and BLAS accelerated operations
         - by default Intel MKL is used (shipped with NuGet package)
         - other BLASes (OpenBLAS, vendor-specific) can be selected by configuration option
       - CUDA GPU: all operations performed locally on GPU and cuBLAS used for matrix operations

     Requirements:
       - Linux, MacOS or Windows on x64
       - Linux requires libgomp.so.1 installed.

     Additional algorithms are provided in the Tensor.Algorithm package.

Product Versions
.NET net5.0 net5.0-windows net6.0 net6.0-android net6.0-ios net6.0-maccatalyst net6.0-macos net6.0-tvos net6.0-windows
.NET Core netcoreapp2.0 netcoreapp2.1 netcoreapp2.2 netcoreapp3.0 netcoreapp3.1
.NET Standard netstandard2.0 netstandard2.1
.NET Framework net461 net462 net463 net47 net471 net472 net48
MonoAndroid monoandroid
MonoMac monomac
MonoTouch monotouch
Tizen tizen40 tizen60
Xamarin.iOS xamarinios
Xamarin.Mac xamarinmac
Xamarin.TVOS xamarintvos
Xamarin.WatchOS xamarinwatchos
Compatible target framework(s)
Additional computed target framework(s)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (3)

Showing the top 3 NuGet packages that depend on Tensor:

Package Downloads
DeepNet

Deep learning library for F#. Provides symbolic model differentiation, automatic differentiation and compilation to CUDA GPUs. Includes optimizers and model blocks used in deep learning. Make sure to set the platform of your project to x64.

RPlotTools

Tools for plotting using R from F#.

Tensor.Algorithm

Data types: - arbitrary precision rational numbers Matrix algebra (integer, rational): - Row echelon form - Smith normal form - Kernel, cokernel and (pseudo-)inverse Matrix decomposition (floating point): - Principal component analysis (PCA) - ZCA whitening Misc: - Bezout's identity - Loading of NumPy's .npy and .npz files.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
0.4.11 5,175 5/8/2018
0.4.11-v0.4.11-215 542 5/8/2018
0.4.11-symtensor-core-242 629 11/15/2018
0.4.11-symtensor-core-241 582 11/15/2018
0.4.11-symtensor-core-240 589 11/15/2018
0.4.11-symtensor-core-239 581 11/15/2018
0.4.11-symtensor-core-238 584 11/15/2018
0.4.11-symtensor-core-237 617 11/15/2018
0.4.11-symtensor-core-236 568 11/14/2018
0.4.11-symtensor-core-235 577 11/14/2018
0.4.11-symtensor-core-234 579 11/14/2018
0.4.11-symtensor-core-231 589 11/9/2018
0.4.11-symtensor-core-230 605 11/9/2018
0.4.11-symtensor-core-229 561 11/8/2018
0.4.11-symtensor-core-228 572 11/8/2018
0.4.11-symtensor-core-227 619 10/30/2018
0.4.11-symtensor-core-226 625 10/30/2018
0.4.11-symtensor-core-225 555 10/30/2018
0.4.11-develop-216 780 5/8/2018
0.4.10-develop-213 781 5/8/2018
0.4.10-develop-212 772 5/7/2018
0.4.10-develop-211 793 5/7/2018
0.3.0.712-master 648 9/1/2017
0.3.0.711-master 650 9/1/2017
0.3.0.710-master 629 9/1/2017
0.3.0.709-master 612 8/31/2017
0.3.0.708-master 635 8/30/2017
0.3.0.707-master 657 8/30/2017
0.3.0.706-master 634 8/30/2017
0.3.0.701-master 671 6/26/2017
0.3.0.700-master 684 6/22/2017
0.3.0.699-master 663 6/22/2017
0.3.0.698-master 660 6/21/2017
0.3.0.697-master 658 6/21/2017
0.3.0.696-master 693 6/21/2017
0.3.0.695-master 662 6/21/2017
0.3.0.694-master 654 6/21/2017
0.3.0.693-master 663 6/20/2017
0.3.0.692-master 649 6/19/2017
0.3.0.691-master 679 6/19/2017
0.3.0.690-master 671 6/19/2017
0.3.0.689-master 658 5/14/2017
0.3.0.688 6,323 5/14/2017
0.3.0.686-master 669 5/14/2017
0.2.0.591-master 663 4/19/2017
0.2.0.565-master 681 4/11/2017
0.2.0.556-master 662 3/21/2017
0.2.0.551-master 718 3/17/2017
0.2.0.540-master 658 3/15/2017
0.2.0.536-master 651 3/14/2017
0.2.0.519-master 677 3/2/2017
0.2.0.516-master 654 3/2/2017
0.2.0.499-master 680 2/13/2017
0.2.0.494-master 656 2/7/2017
0.2.0.479-master 675 2/1/2017
0.2.0.463-master 671 1/17/2017
0.2.0.431-master 751 12/2/2016
0.2.0.422-master 1,048 11/9/2016
0.2.0.421-master 983 11/9/2016
0.2.0.411-master 725 10/26/2016
0.2.0.400-master 680 10/26/2016
0.2.0.394-master 698 10/25/2016
0.2.0.382-master 688 10/21/2016
0.2.0.377-master 677 10/20/2016
0.2.0.323-master 666 10/11/2016
0.2.0.262-master 698 9/29/2016
0.2.0.248-master 695 9/27/2016
0.2.0.174-master 703 9/16/2016
0.2.0.128-master 702 9/8/2016
0.2.0.122-master 706 9/8/2016
0.2.0.121-master 682 9/7/2016
0.2.0.111-master 675 9/7/2016
0.2.0.105-ci 737 9/5/2016
0.2.0.97-ci 729 8/30/2016
0.2.0.96-ci 706 8/29/2016
0.2.0.90-ci 695 8/25/2016
0.2.0.89-ci 681 8/24/2016
0.2.0.88-ci 691 8/24/2016
0.2.0.87-ci 699 8/24/2016
0.2.0.86-ci 690 8/23/2016
0.2.0.85-ci 698 8/22/2016
0.2.0.84-ci 706 8/22/2016
0.2.0.83-ci 713 8/22/2016
0.2.0.82 1,620 8/22/2016
0.2.0.81-ci 720 8/19/2016
0.2.0.80-ci 719 6/27/2016
0.2.0.79-ci 713 6/27/2016
0.2.0.77-ci 712 6/22/2016
0.2.0.76-ci 721 6/22/2016
0.2.0.75 1,109 6/15/2016
0.2.0.74-ci 1,065 6/15/2016
0.2.0.73 1,320 6/15/2016
0.2.0.72 1,331 6/15/2016
0.2.0.71 1,290 6/14/2016
0.2.0.70 1,194 6/9/2016
0.2.0.69 1,157 6/9/2016
0.2.0.68 966 6/9/2016
0.2.0.67 1,459 6/8/2016
0.2.0.66-ci 712 6/8/2016
0.2.0.65-ci 716 6/8/2016
0.2.0.64-ci 761 6/8/2016
0.2.0.63-ci 693 6/7/2016
0.2.0.62 986 6/7/2016
0.2.0.61 962 6/6/2016
0.2.0.60 946 6/6/2016
0.2.0.59 938 6/6/2016
0.2.0.57 975 6/3/2016
0.2.0.56 950 6/3/2016
0.2.0.55 1,031 6/3/2016
0.2.0.54 980 6/3/2016
0.2.0.53 1,317 6/3/2016
0.2.0.52-ci 690 6/2/2016
0.2.0.51-ci 716 6/2/2016
0.2.0.50-ci 721 6/2/2016
0.2.0.49 1,331 5/31/2016
0.2.0.48-ci 752 5/31/2016
0.2.0.46-ci 730 5/31/2016
0.2.0.45 1,090 5/31/2016
0.2.0.44 1,093 5/31/2016
0.2.0.43 1,094 5/31/2016
0.2.0.42 1,115 5/30/2016
0.2.0.41 1,111 5/30/2016
0.2.0.40 1,134 5/30/2016
0.2.0.39 1,115 5/30/2016
0.2.0.38 1,105 5/30/2016
0.2.0.37 1,068 5/30/2016
0.2.0.36 1,068 5/25/2016
0.2.0.35 1,089 5/24/2016
0.2.0.34 1,126 5/24/2016
0.2.0.33 1,920 5/24/2016
0.2.0.32-ci 723 5/24/2016
0.1.26-ci 745 5/24/2016
0.1.24-ci 734 5/24/2016
0.1.19-ci 715 5/24/2016