TYoshimura.DoubleDouble.Complex 1.8.1

dotnet add package TYoshimura.DoubleDouble.Complex --version 1.8.1                
NuGet\Install-Package TYoshimura.DoubleDouble.Complex -Version 1.8.1                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="TYoshimura.DoubleDouble.Complex" Version="1.8.1" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add TYoshimura.DoubleDouble.Complex --version 1.8.1                
#r "nuget: TYoshimura.DoubleDouble.Complex, 1.8.1"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install TYoshimura.DoubleDouble.Complex as a Cake Addin
#addin nuget:?package=TYoshimura.DoubleDouble.Complex&version=1.8.1

// Install TYoshimura.DoubleDouble.Complex as a Cake Tool
#tool nuget:?package=TYoshimura.DoubleDouble.Complex&version=1.8.1                

DoubleDoubleComplex

Double-Double Complex and Quaternion Implements

Requirement

.NET 8.0
DoubleDouble

Install

Download DLL
Download Nuget

Functions

function note
Complex.Sqrt(z)
Complex.Cbrt(z)
Complex.RootN(z, n)
Complex.Log2(z)
Complex.Log(z)
Complex.Log(z, b)
Complex.Log10(z)
Complex.Log1p(z) log(1+z)
Complex.Pow2(z)
Complex.Pow(z, p)
Complex.Exp(z)
Complex.Sin(z)
Complex.Cos(z)
Complex.Tan(z)
Complex.SinPi(z) sin(πz)
Complex.CosPi(z) cos(πz)
Complex.TanPi(z) tan(πz)
Complex.Sinh(z)
Complex.Cosh(z)
Complex.Tanh(z)
Complex.Asin(z) Accuracy deteriorates near z=-1,1.
Complex.Acos(z) Accuracy deteriorates near z=-1,1.
Complex.Atan(z)
Complex.Asinh(z)
Complex.Acosh(z)
Complex.Atanh(z) Accuracy deteriorates near z=-1,1.
Complex.Gamma(z) Accuracy deteriorates near non-positive intergers. <br/> If z is Natual number lass than 35, an exact integer value is returned.
Complex.LogGamma(z)
Complex.Digamma(z) Near the positive root, polynomial interpolation is used.
Complex.Erf(z)
Complex.Erfc(z)
Complex.Erfcx(z)
Complex.FresnelC(z)
Complex.FresnelS(z)
Complex.BesselJ(nu, z) Accuracy deteriorates near root.<br/>abs(nu) ≤ 256
Complex.BesselY(nu, z) Accuracy deteriorates near root.<br/>abs(nu) ≤ 256
Complex.BesselI(nu, z) Accuracy deteriorates near root.<br/>abs(nu) ≤ 256
Complex.BesselK(nu, z) Accuracy deteriorates near root.<br/>abs(nu) ≤ 256
Complex.HankelH1(nu, z) Accuracy deteriorates near root.<br/>abs(nu) ≤ 256
Complex.HankelH2(nu, z) Accuracy deteriorates near root.<br/>abs(nu) ≤ 256
Complex.AiryAi(z) Accuracy deteriorates near root.
Complex.AiryBi(z) Accuracy deteriorates near root.
Complex.E1(z) exponential integral
Complex.Ei(z) exponential integral
Complex.Ein(z) complementary exponential integral
Complex.Si(z) sine integral
Complex.Ci(z) cosine integral
Complex.Shi(z) hyperbolic sine integral
Complex.Chi(z) hyperbolic cosine integral
Complex.Sinc(z) sin(z)/z
Complex.Sinhc(z) sinh(z)/z

Usage

Complex z = "1+16i"; // z = (1, 16), new Complex(1, 16);
Complex c = Complex.Gamma(z);

Console.WriteLine(c);

Licence

MIT

Author

T.Yoshimura

Product Compatible and additional computed target framework versions.
.NET net8.0 is compatible.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (3)

Showing the top 3 NuGet packages that depend on TYoshimura.DoubleDouble.Complex:

Package Downloads
TYoshimura.DoubleDouble.Statistic

Double-Double Statistic Implements

TYoshimura.ComplexAlgebra

Complex Algebra

TYoshimura.DoubleDouble.AdvancedIntegrate

Double-Double Numerical Advanced Integration Implements

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
1.8.1 63 11/19/2024
1.8.0 70 11/18/2024
1.7.1 63 11/17/2024
1.7.0 70 11/14/2024
1.6.3 81 11/13/2024
1.6.2 53 11/13/2024
1.6.1 57 11/13/2024
1.6.0 112 10/31/2024
1.5.8 77 10/29/2024
1.5.7 69 10/29/2024
1.5.6 76 10/23/2024
1.5.5 60 10/21/2024
1.5.4 111 10/18/2024
1.5.3 72 10/17/2024
1.5.2 75 10/15/2024
1.5.1 74 10/14/2024
1.5.0 88 10/12/2024
1.4.9 95 9/18/2024
1.4.8 106 9/15/2024
1.4.7 133 9/7/2024
1.4.6 156 8/22/2024
1.4.5 136 8/20/2024
1.4.4 117 8/18/2024
1.4.3 111 8/17/2024
1.4.2 106 8/17/2024
1.4.1 110 8/17/2024
1.4.0 456 1/20/2024
1.3.9 144 10/8/2023
1.3.8 112 10/7/2023
1.3.7 127 9/19/2023
1.3.6 110 9/19/2023
1.3.5 107 9/18/2023
1.3.4 119 9/16/2023
1.3.3 124 9/15/2023
1.3.2 146 9/14/2023
1.3.1 124 9/9/2023
1.3.0 125 9/4/2023
1.2.1 220 3/13/2023
1.2.0 378 9/4/2022
1.1.0 427 1/21/2022
1.0.0 247 1/9/2022

fix: debug vis