Microsoft.ML.CpuMath 1.7.0 Prefix Reserved

Install-Package Microsoft.ML.CpuMath -Version 1.7.0
dotnet add package Microsoft.ML.CpuMath --version 1.7.0
<PackageReference Include="Microsoft.ML.CpuMath" Version="1.7.0" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add Microsoft.ML.CpuMath --version 1.7.0
The NuGet Team does not provide support for this client. Please contact its maintainers for support.
#r "nuget: Microsoft.ML.CpuMath, 1.7.0"
#r directive can be used in F# Interactive, C# scripting and .NET Interactive. Copy this into the interactive tool or source code of the script to reference the package.
// Install Microsoft.ML.CpuMath as a Cake Addin
#addin nuget:?package=Microsoft.ML.CpuMath&version=1.7.0

// Install Microsoft.ML.CpuMath as a Cake Tool
#tool nuget:?package=Microsoft.ML.CpuMath&version=1.7.0
The NuGet Team does not provide support for this client. Please contact its maintainers for support.

Microsoft.ML.CpuMath contains optimized math routines for ML.NET.

  • .NETCoreApp 3.1

    • No dependencies.
  • .NETStandard 2.0

NuGet packages (2)

Showing the top 2 NuGet packages that depend on Microsoft.ML.CpuMath:

Package Downloads
Microsoft.ML

ML.NET is a cross-platform open-source machine learning framework which makes machine learning accessible to .NET developers.

Microsoft.ML.AutoML

ML.NET AutoML: Optimizes an ML pipeline for your dataset, by automatically locating the best feature engineering, model, and hyperparameters

GitHub repositories (4)

Showing the top 4 popular GitHub repositories that depend on Microsoft.ML.CpuMath:

Repository Stars
dotnet/machinelearning
ML.NET is an open source and cross-platform machine learning framework for .NET.
LionelJouin/PiP-Tool
PiP tool is a software to use the Picture in Picture mode on Windows. This feature allows you to watch content (video for example) in thumbnail format on the screen while continuing to use any other software on Windows.
microsoft/CryptoNets
CryptoNets is a demonstration of the use of Neural-Networks over data encrypted with Homomorphic Encryption. Homomorphic Encryptions allow performing operations such as addition and multiplication over data while it is encrypted. Therefore, it allows keeping data private while outsourcing computation (see here and here for more about Homomorphic Encryptions and its applications). This project demonstrates the use of Homomorphic Encryption for outsourcing neural-network predictions. The scenario in mind is a provider that would like to provide Prediction as a Service (PaaS) but the data for which predictions are needed may be private. This may be the case in fields such as health or finance. By using CryptoNets, the user of the service can encrypt their data using Homomorphic Encryption and send only the encrypted message to the service provider. Since Homomorphic Encryptions allow the provider to operate on the data while it is encrypted, the provider can make predictions using a pre-trained Neural-Network while the data remains encrypted throughout the process and finaly send the prediction to the user who can decrypt the results. During the process the service provider does not learn anything about the data that was used, the prediction that was made or any intermediate result since everything is encrypted throughout the process. This project uses the Simple Encrypted Arithmetic Library SEAL version 3.2.1 implementation of Homomorphic Encryption developed in Microsoft Research.
fabsenet/adrilight
An Ambilight clone for Windows based sources - HTPC or just a normal PC
Version Downloads Last updated
1.7.0 12,425 11/9/2021
1.7.0-preview.final 906 10/22/2021
1.6.0 82,671 7/15/2021
1.5.5 150,142 3/4/2021
1.5.4 66,086 12/17/2020
1.5.2 148,198 9/11/2020
1.5.1 51,869 7/11/2020
1.5.0 86,479 5/26/2020
1.5.0-preview2 40,016 3/12/2020
1.5.0-preview 41,186 12/26/2019
1.4.0 332,731 11/5/2019
1.4.0-preview2 25,623 10/8/2019
1.4.0-preview 46,759 8/30/2019
1.3.1 105,673 8/6/2019
1.2.0 63,827 7/3/2019
1.1.0 26,558 6/4/2019
1.0.0 138,517 5/2/2019
1.0.0-preview 16,215 4/2/2019
0.11.0 29,957 3/5/2019
0.10.0 35,217 2/5/2019
0.9.0 21,695 1/8/2019
0.8.0 14,245 12/4/2018
0.7.0 21,098 11/6/2018
0.6.0 14,833 10/2/2018
0.5.0 7,386 9/5/2018
0.4.0 60,849 8/7/2018